日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè){an}是公差大于零的等差數(shù)列,已知a1=2,a3=a2-10.
          (Ⅰ)求{an}的通項(xiàng)公式;
          (Ⅱ)設(shè){bn}是以函數(shù)y=4sin2πx+
          12
          )-1的最小正周期為首項(xiàng),以3為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn
          分析:(Ⅰ)題目給出了等差數(shù)列的首項(xiàng),給出了a3=a2-10可求公差,則通項(xiàng)公式可求;
          (Ⅱ)把給出的三角函數(shù)式化簡(jiǎn)后可求其周期,則等比數(shù)列的通項(xiàng)公式可求,求數(shù)列{an-bn}的前n項(xiàng)和Sn,可先分組,然后運(yùn)用等差和等比數(shù)列的前n項(xiàng)和分別求和,最后合并在一起即可.
          解答:解:(Ⅰ)設(shè){an}的公差為d,則由a1=2,d=a3-a2=-10,
          所以an=a1+(n-1)d=2+(n-1)×(-10)=-10n+12;
          (Ⅱ)因?yàn)閥=4sin2πx+
          1
          2
          )-1=
          1-cos(2πx+1)
          2
          -1=-2cos(2πx+1)+1
          ,
          其最小正周期為
          =1
          ,故數(shù)列{bn}的首項(xiàng)為1,又其公比為3,
          所以bn=3n-1,
          所以an-bn=-10n+12-3n-1,
          Sn=-10(1+2+3+…+n)-(30+31+32+…+3n-1)+12n=-10×
          n(n+1)
          2
          -
          1×(1-3n)
          1-3
          +12n
          =-
          3n
          2
          -5n2+7n+
          1
          2
          點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,數(shù)列的求和及三角函數(shù)周期性的求法,解答此題的關(guān)鍵是進(jìn)行分組,此題考查了學(xué)生的計(jì)算能力,此題是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè){an}是公差大于零的等差數(shù)列,已知a1=2,a3=a22-10.
          (Ⅰ)求{an}的通項(xiàng)公式;
          (Ⅱ)設(shè){bn}是以函數(shù)y=4sin2πx的最小正周期為首項(xiàng),以3為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè){an}是公差大于0的等差數(shù)列,bn=(
          1
          2
          )an
          ,已知b1+b2+b3=
          21
          8
          ,b1b2b3=
          1
          8
          ,
          (1)求證:數(shù)列{bn}是等比數(shù)列;
          (2)求等差數(shù)列{an}的通項(xiàng)an

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè){an}是公差大于零的等差數(shù)列,已知a1=2,a3=a22-10.
          (Ⅰ)求{an}的通項(xiàng)公式;
          (Ⅱ)設(shè){bn}是以函數(shù)y=4sin2(πx+
          1
          2
          )-1的最小正周期為首項(xiàng),以3為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn;
          (Ⅲ)若f(n)=
          2
          2n+a1
          +
          2
          2n+a2
          +…+
          2
          2n+an
          (n∈N,且n≥2,求函數(shù)f(n)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島市高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè){an}是公差大于零的等差數(shù)列,已知a1=2,
          (Ⅰ)求{an}的通項(xiàng)公式;
          (Ⅱ)設(shè){bn}是以函數(shù)y=4sin2πx的最小正周期為首項(xiàng),以3為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案