日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•閔行區(qū)一模)已知函數(shù)f(x)=loga
          1-x1+x
          (0<a<1)

          (1)求函數(shù)f(x)的定義域D,并判斷f(x)的奇偶性;
          (2)用定義證明函數(shù)f(x)在D上是增函數(shù);
          (3)如果當(dāng)x∈(t,a)時(shí),函數(shù)f(x)的值域是(-∞,1),求a與t的值.
          分析:(1)直接由真數(shù)大于0,解分式不等式可得函數(shù)的定義域,利用定義判斷函數(shù)的奇偶性;
          (2)直接利用函數(shù)的單調(diào)性定義證明,作差整理后出現(xiàn)對數(shù)式,這需要證明對數(shù)式的真數(shù)與1的大小關(guān)系,可以單獨(dú)拿出運(yùn)用作差法;
          (3)給出的函數(shù)是對數(shù)型的復(fù)合函數(shù),經(jīng)分析可知內(nèi)層分式函數(shù)為減函數(shù),外層對數(shù)函數(shù)也為減函數(shù),要保證
          當(dāng)x∈(t,a)時(shí),f(x)的值域是(-∞,1),首先應(yīng)有(t,a)⊆(-1,1),且當(dāng)x∈(t,a)時(shí),
          1-x
          1+x
          ∈(a,+∞),結(jié)合內(nèi)層函數(shù)圖象及單調(diào)性可得t=-1,且
          1-a
          1+a
          =a
          ,從而求出a和t的值;
          解答:解:(1)要使原函數(shù)有意義,則
          1-x
          1+x
          >0
          ,解得-1<x<1,
          所以函數(shù)f(x)的定義域D=(-1,1).
          函數(shù)f(x)在定義域內(nèi)為奇函數(shù).
          證明:對任意x∈D,f(-x)=loga
          1+x
          1-x
          =loga(
          1-x
          1+x
          )-1=-loga(
          1-x
          1+x
          )=-f(x)

          所以函數(shù)f(x)是奇函數(shù).
          另證:對任意x∈D,f(-x)+f(x)=loga
          1+x
          1-x
          +loga(
          1-x
          1+x
          )=loga1=0

          所以函數(shù)f(x)是奇函數(shù).
          (2)設(shè)x1,x2∈(-1,1),且x1<x2,則f(x1)-f(x2)=loga
          1-x1
          1+x1
          -loga
          1-x2
          1+x2
          =loga(
          1-x1
          1+x1
          1+x2
          1-x2
          )=loga
          1-x1x2+(x2-x1)
          1-x1x2-(x2-x1)

          ∵x1,x2∈(-1,1),且x1<x2,
          ∴1-x1x2+(x2-x1)-[1-x1x2-(x2-x1)]=2(x2-x1)>0.
          ∴1-x1x2+(x2-x1)>[1-x1x2-(x2-x1)]=(1-x1)(1-x2)>0.
          1-x1x2+(x2-x1)
          1-x1x2-(x2-x1)
          >1

          ∵0<a<1,
          loga
          1-x1x2+(x2-x1)
          1-x1x2-(x2-x1)
          <0

          ∴f(x1)-f(x2)<0,
          ∴f(x1)<f(x2).
          所以函數(shù)f(x)在D上是增函數(shù).
          (3)由(2)知,函數(shù)f(x)在(-1,1)上是增函數(shù),
          又因?yàn)閤∈(t,a)時(shí),f(x)的值域是(-∞,1),
          所以(t,a)⊆(-1,1)且g(x)=
          1-x
          1+x
          在(t,a)的值域是(a,+∞),
          g(a)=
          1-a
          1+a
          =a
          且t=-1(結(jié)合g(x)圖象易得t=-1)
          1-a
          1+a
          =a
          ,得:a2+a=1-a,解得:a=
          2
          -1
          或a=-
          2
          -1
          (舍去).
          所以a=
          2
          -1
          ,t=-1.
          點(diǎn)評:本題考查了函數(shù)的定義域及其求法,考查了利用定義證明函數(shù)的單調(diào)性,考查了復(fù)合函數(shù)的單調(diào)性,考查了復(fù)合函數(shù)的值域,此題的處理有兩處難點(diǎn),一是利用定義證明單調(diào)性時(shí)對差式的真數(shù)與1的大小判斷,二是(3)中的轉(zhuǎn)化求值,體現(xiàn)了學(xué)生靈活處理問題的能力,此題屬有一定難度題型.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)一模)已知復(fù)數(shù)z滿足(1+i)z=4i(i為虛數(shù)單位),則z=
          2+2i
          2+2i

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)一模)已知集合A={a,b,c,d,e},B={c,d,e,f},全集U=A∪B,則集合CU(A∩B)中元素的個(gè)數(shù)為
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)一模)已知拋物線y2=4x的焦點(diǎn)與圓x2+y2+mx-4=0的圓心重合,則m的值是
          -2
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)一模)已知函數(shù)y=g(x)的圖象與函數(shù)y=3x+1的圖象關(guān)于直線y=x對稱,則g(10)的值為
          2
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•閔行區(qū)一模)某算法的程序框圖如右圖,若輸出的S的值為62,則正整數(shù)n的值為
          5
          5

          查看答案和解析>>

          同步練習(xí)冊答案