日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC=
          (1)若a+b=5,求△ABC面積的最大值;
          (2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.

          【答案】
          (1)解:∵a+b=5,

          ∴ab≤( 2=

          ∴SABC= sinC=≤ =


          (2)解:∵2sin2A+sinAsinC=sin2C,

          ∴2a2+ac=c2.即8+2c=c2,

          解得c=4.

          由正弦定理得 ,即

          解得sinA= .∴cosA=

          由余弦定理得cosA= = .即

          解得b= 或2


          【解析】(1)利用基本不等式得出ab的最大值,得出面積的最大值;(2)利用正弦定理得出a,c的關(guān)系,列方程解出c,使用正弦定理解得sinA,利用余弦定理解出b.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=(  )

          A. 7 B. 5

          C. -5 D. -7

          【答案】D

          【解析】解得

          ,∴a1a10a1(1+q9)=-7.D.

          點睛:在解決等差、等比數(shù)列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì),性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進行適當(dāng)變形. 在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.

          型】單選題
          結(jié)束】
          8

          【題目】在數(shù)列{ }中,已知,,則等于(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為推行新課堂教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為成績優(yōu)良”.

          分?jǐn)?shù)

          [50,59)

          [60,69)

          [70,79)

          [80,89)

          [90,100]

          甲班頻數(shù)

          5

          6

          4

          4

          1

          乙班頻數(shù)

          1

          3

          6

          5

          5

          (1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷成績優(yōu)良與教學(xué)方式是否有關(guān)”?

          甲班

          乙班

          總計

          成績優(yōu)良

          成績不優(yōu)良

          總計

          現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

          附: 臨界值表

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線平面,直線平面,有以下四個命題:( )

          ;②;③;④;

          其中正確命題的序號為

          A. ②④ B. ③④ C. ①③ D. ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍(
          A.a≤2
          B.a≤1
          C.a≤﹣1
          D.a≤0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓E: =1(a>b>0)的焦距為2 ,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2
          (1)求橢圓E的方程及離心率;
          (2)點P的坐標(biāo)為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設(shè)直線MB,BP,NB的斜率依次成等差數(shù)列,探究m,n之間是否滿足某種數(shù)量關(guān)系,若是,請給出m,n的關(guān)系式,并證明;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的不等式x2﹣4x+t≤0的解集為A,若(﹣∞,t]∩A≠,則實數(shù)t的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

          將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

          (1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

          (2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求分布列,期望和方差.

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在公差不為0的等差數(shù)列{an}中,a1+a5=ap+aq , 記 + 的最小值為m,若數(shù)列{bn}滿足bn>0,b1= m,bn+1是1與 的等比中項,若bn 對任意n∈N*恒成立,則s的取值范圍是

          查看答案和解析>>

          同步練習(xí)冊答案