日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為 ,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為 ,每命中一次得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨立.假設(shè)該射手完成以上三次射擊.
          (1)求該射手恰好命中一次得的概率;
          (2)求該射手的總得分X的分布列及數(shù)學(xué)期望EX.

          【答案】
          (1)解:記:“該射手恰好命中一次”為事件A,“該射手射擊甲靶命中”為事件B,“該射手第一次射擊乙靶命中”為事件C,“該射手第二次射擊乙靶命中”為事件D

          由題意知P(B)= ,P(C)=P(D)=

          由于A=B + +

          根據(jù)事件的獨立性和互斥性得

          P(A)=P(B )+P( )+P( )=P(B)P( )P( )+P( )P(C)P( )+P( )P( )P(D)

          = ×(1﹣ )×(1﹣ )+(1﹣ )× ×(1﹣ )+(1﹣ )×(1﹣ )×

          =


          (2)解:根據(jù)題意,X的所有可能取值為0,1,2,3,4,5

          根據(jù)事件的對立性和互斥性得

          P(X=0)=P( )=(1﹣ )×(1﹣ )×(1﹣ )=

          P(X=1)=P(B )= ×(1﹣ )×(1﹣ )=

          P(X=2)=P( + )=P( )+P( )=(1﹣ )× ×(1﹣ )+(1﹣ )×(1﹣ )× =

          P(X=3)=P(BC )+P(B D)= × ×(1﹣ )+ ×(1﹣ )× =

          P(X=4)=P( )=(1﹣ )× × =

          P(X=5)=P(BCD)= × × =

          故X的分布列為

          X

          0

          1

          2

          3

          4

          5

          P

          所以E(X)=0× +1× +2× +3× +4× +5× =


          【解析】(1)記:“該射手恰好命中一次”為事件A,“該射手射擊甲靶命中”為事件B,“該射手第一次射擊乙靶命中”為事件C,“該射手第二次射擊乙靶命中”為事件D,由于A=B + + ,根據(jù)事件的獨立性和互斥性可求出所求;(2)根據(jù)題意,X的所有可能取值為0,1,2,3,4,根據(jù)事件的對立性和互斥性可得相應(yīng)的概率,得到分布列,最后利用數(shù)學(xué)期望公式解之即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2﹣y2=1.
          (1)過C1的左頂點引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
          (2)設(shè)斜率為1的直線l交C1于P、Q兩點,若l與圓x2+y2=1相切,求證:OP⊥OQ;
          (3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動點,且OM⊥ON,求證:O到直線MN的距離是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓)的兩個頂點分別為,兩個焦點分別為),過點的直線與橢圓相交于另一點,且.

          (Ⅰ)求橢圓的離心率;

          (Ⅱ)設(shè)直線上有一點)在的外接圓上,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
          (1)求A;
          (2)將函數(shù)y=f(x)的圖象像左平移 個單位,再將所得圖象各點的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為 ( )

          (參考數(shù)據(jù):

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

          在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

          (1)若a=1,求Cl的交點坐標(biāo);

          (2)若C上的點到l的距離的最大值為,求a.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)p:實數(shù)x滿足x2-5ax+4a2<0(其中a>0),q:實數(shù)x滿足2<x≤5.

          (1)若a=1,且pq為真,求實數(shù)x的取值范圍;

          (2)若qp的必要不充分條件,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD, ,PA=2,E是PC上的一點,PE=2EC.

          (1)證明:PC⊥平面BED;
          (2)設(shè)二面角A﹣PB﹣C為90°,求PD與平面PBC所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4﹣5:不等式選講
          已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
          (1)求a的值;
          (2)若 恒成立,求k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案