日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(本小題滿分12分)設(shè)拋物線的頂點在坐標(biāo)原點,焦點軸正半軸上,過點的直線交拋物線于兩點,線段的長是,的中點到軸的距離是

          (1)求拋物線的標(biāo)準(zhǔn)方程;

          (2)在拋物線上是否存在不與原點重合的點,使得過點的直線交拋物線于另一點,滿足,且直線與拋物線在點處的切線垂直?并請說明理由.

          【答案】1;(2)存在點.

          【解析】試題分析:(1)求拋物線標(biāo)準(zhǔn)方程的常用方法是待定系數(shù)法,其關(guān)鍵是判斷焦點位置,開口方向,在方程的類型已經(jīng)確定的前提下,由于標(biāo)準(zhǔn)方程只有一個參數(shù),只需一個條件就可以確定拋物線的標(biāo)準(zhǔn)方程;(2)在解決與拋物線性質(zhì)有關(guān)的問題時,要注意利用幾何圖形的形象、直觀的特點來解題,特別是涉及焦點、頂點、準(zhǔn)線的問題更是如此;(3)解決直線和拋物線的綜合問題時注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點,而斜率未知;有的題設(shè)條件已知斜率,點不定,可由點斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與拋物線的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步:求解判別式:計算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問題中結(jié)論.

          試題解析:(1)設(shè)拋物線的方程是,,

          由拋物線定義可知2

          中點到軸的距離為3,∴p2,

          所以拋物線的標(biāo)準(zhǔn)方程是. 4

          (2)設(shè),則處的切線方程是,

          直線代入6

          ,所以8

          10

          ,得,所以,

          存在點. 12

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)的圖象如圖所示.
          (1)寫出該函數(shù)的零點;
          (2)寫出該函數(shù)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),且f(2)= ,
          (1)確定函數(shù)f(x)的解析式;
          (2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數(shù);
          (3)解不等式f(t﹣1)+f(t)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.
          (1)若BA,求實數(shù)a的值;
          (2)若A∩B≠,求a2﹣b2+2a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直角梯形中, , ,平面平面, 為等邊三角形, 分別是的中點, .

          (1)證明: ;

          (2)證明: 平面;

          (3),求幾何體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|x2﹣3x<0},B={x|(x+2)(4﹣x)≥0},C={x|a<x≤a+1}.
          (1)求A∩B;
          (2)若B∪C=B,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)是奇函數(shù),函數(shù)是偶函數(shù),則

          A. 函數(shù)是奇函數(shù) B. 函數(shù)是奇函數(shù)

          C. 函數(shù)是奇函數(shù) D. 是奇函數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( 。
          A.57.2,3.6
          B.57.2,56.4
          C.62.8,63.6
          D.62.8,3.6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校的特長班有50名學(xué)生,其中有體育生20名,藝術(shù)生30名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測試,心率全部介于50次/分到75次/分之間,現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五組,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.

          (Ⅰ)求的值,并求這50名同學(xué)心率的平均值;

          (Ⅱ)因為學(xué)習(xí)專業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為0.8,請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為心率小于60次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?說明你的理由.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          參考公式: ,其中

          心率小于60次/分

          心率不小于60次/分

          合計

          體育生

          20

          藝術(shù)生

          30

          合計

          50

          查看答案和解析>>

          同步練習(xí)冊答案