日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
          x2
          x+1

          (1)求函數(shù)y=f(x)的最小值m(a);
          (2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.
          (1)由f(x)=x2-2ax+4=(x-a)2+4-a2,得m(a)=
          4-a21≤a<2
          8-4aa≥2.
          …(6分)
          (2)g(x)=(x+1)+
          1
          x+1
          -2
          ,當(dāng)x∈[0,2]時,x+1∈[1,3],
          又g(x)在區(qū)間[0,2]上單調(diào)遞增,故g(x)∈[0,
          4
          3
          ]
          .             …(9分)
          由題設(shè),得f(x2min>g(x1max,故
          1≤a<2
          4-a2
          4
          3
          a≥2
          8-4a>
          4
          3
          …(12分)
          解得1≤a<
          2
          6
          3
          為所求的范圍.                                     …(14分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間[0,2]上的函數(shù)y=f(x)的圖象如圖所示,則y=f(2-x)的圖象為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
          2x3

          (1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
          (2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•順義區(qū)二模)已知定義在區(qū)間[0,
          2
          ]上的函數(shù)y=f(x)的圖象關(guān)于直線x=
          4
          對稱,當(dāng)x
          4
          時,f(x)=cosx,如果關(guān)于x的方程f(x)=a有解,記所有解的和為S,則S不可能為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          填空題
          (1)已知
          cos2x
          sin(x+
          π
          4
          )
          =
          4
          3
          ,則sin2x的值為
          1
          9
          1
          9

          (2)已知定義在區(qū)間[0,
          2
          ]
          上的函數(shù)y=f(x)的圖象關(guān)于直線x=
          4
          對稱,當(dāng)x≥
          4
          時,f(x)=cosx,如果關(guān)于x的方程f(x)=a有四個不同的解,則實數(shù)a的取值范圍為
          (-1,-
          2
          2
          )
          (-1,-
          2
          2
          )


          (3)設(shè)向量
          a
          b
          ,
          c
          滿足
          a
          +
          b
          +
          c
          =
          0
          (
          a
          -
          b
          )⊥
          c
          ,
          a
          b
          ,若|
          a
          |=1
          ,則|
          a
          |2+|
          b
          |2+|
          c
          |2
          的值是
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
          2xx+1

          (1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
          (2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案