日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-1:幾何證明選講
          如圖,已知⊙O和⊙M相交于A、B兩點(diǎn),AD為⊙M的直徑,直線BD交⊙O于點(diǎn)C,點(diǎn)G為弧的中點(diǎn),連結(jié)AG分別交⊙O、BD于點(diǎn)E、F,連結(jié)CE.
          (Ⅰ)求證:為⊙O的直徑。
          (Ⅱ)求證:;
          解:(I)連結(jié)
          為⊙M的直徑

          在⊙中,
          為⊙O的直徑。    …………………4分
          (II) ∵

          ∵點(diǎn)G為弧的中點(diǎn)

          在⊙中,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知圓內(nèi)的一個(gè)定點(diǎn)作圓C與已知圓相切,則圓C的圓心軌跡是(   )
          A.圓B.橢圓C.圓或橢圓D.線段

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (2)(2011年山西六校模考)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,已知點(diǎn)的直角坐標(biāo)為,點(diǎn)的極坐標(biāo)為,若直線過(guò)點(diǎn),且傾斜角為,圓為圓心、為半徑。
          ①求直線的參數(shù)方程和圓的極坐標(biāo)方程; ②試判定直線和圓的位置關(guān)系。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知圓與兩坐標(biāo)軸都相切,圓心到直線的距離等于.
          (1)求圓的方程;
          (2)若圓心在第一象限,點(diǎn)是圓上的一個(gè)動(dòng)點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知圓的圓心為C(-1,3),直線3x+4y-7=0被圓截得的弦長(zhǎng)為,則圓的方程為(   )
          A.(x+1)2+(y-3)2="4" B.(x-1)2+(y+3)2="4"
          C.(x+1)2+(y+3)2="4" D.(x-1)2+(y-3)2=4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          圓心是,且經(jīng)過(guò)原點(diǎn)的圓的標(biāo)準(zhǔn)方程為_____________________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          圓C的半徑為1,圓心在第一象限,與y軸相切,與x軸相交于A、B,|AB|=,則該圓的標(biāo)準(zhǔn)方程是      ____  .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          設(shè)直線與圓C1交于A,B兩點(diǎn),若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧上,則圓C2的半徑的最大值是         ;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          若圓上至少有三個(gè)不同點(diǎn)到直線:的距離為,則直線的斜率的取值范圍是       

          查看答案和解析>>

          同步練習(xí)冊(cè)答案