日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>b>0,則橢圓與雙曲線的關(guān)系是( )
          A.焦點(diǎn)相同
          B.離心率相等
          C.離心率互為倒數(shù)
          D.有且只有兩個(gè)公共點(diǎn)
          【答案】分析:根據(jù)橢圓、雙曲線的基本概念,對(duì)A、B、C、D各項(xiàng)分別加以驗(yàn)證,可得兩個(gè)曲線的公共點(diǎn)有且僅有兩個(gè):(a,0)和(-a,0),D項(xiàng)正確.而其它三項(xiàng)都可證出是不正確的.
          解答:解:對(duì)于A,橢圓的焦點(diǎn)為(,0),
          雙曲線的焦點(diǎn)為(,0),故它們焦點(diǎn)不同,A不正確;
          對(duì)于B,因?yàn)殡p曲線的離心率必定大于橢圓的離心率,
          所以兩個(gè)曲線的離心率不相等,B不正確;
          對(duì)于C,橢圓的離心率e1=
          雙曲線的離心率e2=,可得e1e2=<1
          ∴兩個(gè)曲線的離心率不互為倒數(shù),C不正確
          對(duì)于D,聯(lián)解兩條曲線方程,可得它們的公共解為
          ∴兩個(gè)曲線的公共點(diǎn)有且僅有兩個(gè):(a,0)和(-a,0)
          故選:D
          點(diǎn)評(píng):本題給出橢圓方程和雙曲線方程,判斷它們之間的關(guān)系.著重考查了橢圓和雙曲線的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)等知識(shí)點(diǎn),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化三模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(
          3
          ,
          3
          2
          )
          ,離心率e=
          1
          2
          ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          ,
          y0
          b
          )
          稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的方程;
          (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,F(xiàn)1,F(xiàn)2為橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率e=
          3
          2
          S△DEF2=1-
          3
          2
          .若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          ,
          y0
          b
          )稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”.直線l與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,已知以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為
          3
          2
          的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①f(
          k
          2
          )=6
          ;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
          k
          2
          ,0)
          對(duì)稱(chēng);⑤函數(shù)f(m)=3
          3
          時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:懷化三模 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(
          3
          ,
          3
          2
          )
          ,離心率e=
          1
          2
          ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          y0
          b
          )
          稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的方程;
          (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013年湖南省懷化市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

          如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);⑤函數(shù)時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( )
          A.①③⑤
          B.②③④
          C.②③⑤
          D.③④⑤

          查看答案和解析>>

          同步練習(xí)冊(cè)答案