日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,橢圓的左焦點(diǎn)為,橢圓上任意點(diǎn)到的最遠(yuǎn)距離是,過直線軸的交點(diǎn)任作一條斜率不為零的直線與橢圓交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對稱點(diǎn)為.

          (1)求橢圓的方程;

          (2)求證:、三點(diǎn)共線;

          (3)求面積的最大值.

          【答案】();()證明見解析;().

          【解析】

          ()由題意得到關(guān)于a,b,c的方程組,求得a,b的值即可確定橢圓方程;

          ()設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理證明即可證得題中的結(jié)論.

          ()由題意可得的面積,結(jié)合均值不等式的結(jié)論確定面積的最大值即可.

          ()由題意可得:,解得:,

          故橢圓的離心率為:.

          ()結(jié)合()中的橢圓方程可得:,故,

          設(shè)直線的方程為,

          聯(lián)立直線方程與橢圓方程:可得:

          .

          直線與橢圓相交,則:,

          解得:.

          設(shè),,

          則:,

          故:

          代入上式可得:

          三點(diǎn)共線;

          ()結(jié)合()中的結(jié)論可得:

          的面積

          .

          當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的面積的最大值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某精準(zhǔn)扶貧幫扶單位,為幫助定點(diǎn)扶貧村真正脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助精準(zhǔn)扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當(dāng)?shù)靥禺a(chǎn)蘋果.蘋果單果直徑不同單價(jià)不同,為了更好的銷售,現(xiàn)從該精準(zhǔn)扶貧戶種植的蘋果樹上隨機(jī)摘下了50個(gè)蘋果測量其直徑,經(jīng)統(tǒng)計(jì),其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:),統(tǒng)計(jì)的莖葉圖如圖所示:

          (Ⅰ)按分層抽樣的方法從單果直徑落在[80,85),[85,90)的蘋果中隨機(jī)抽取6個(gè),再從這6個(gè)蘋果中隨機(jī)抽取2個(gè),求這兩個(gè)蘋果單果直徑均在[85,90)內(nèi)的概率;

          (Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.已知該精準(zhǔn)扶貧戶有20000個(gè)約5000千克蘋果待出售,某電商提出兩種收購方案:

          方案:所有蘋果均以5.5元/千克收購;

          方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個(gè)蘋果,定價(jià)收購方式為:單果直徑 在[50,65)內(nèi)按35元/箱收購,在[65,90)內(nèi)按50元/箱收購,在[90,95]內(nèi)按35元/箱收購.包裝箱與分揀裝箱工費(fèi)為5元/箱.請你通過計(jì)算為該精準(zhǔn)扶貧戶推薦收益最好的方案.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在長方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點(diǎn)E是棱AB的中點(diǎn).

          (1)求異面直線AD1EC所成角的大小;

          (2)《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,試問四面體D1CDE是否為鱉臑?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過Mx軸的垂線,垂足為N,點(diǎn)P滿足.

          1)求點(diǎn)P的軌跡方程;

          2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線C的左焦點(diǎn)F.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),求不等式的解集;

          2)若的圖像與軸圍成直角三角形,的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】關(guān)于曲線,有如下結(jié)論:

          ①曲線C關(guān)于原點(diǎn)對稱;

          ②曲線C關(guān)于直線x±y=0對稱;

          ③曲線C是封閉圖形,且封閉圖形的面積大于2π;

          ④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點(diǎn);

          ⑤曲線C與曲線4個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形.其中所有正確結(jié)論的序號(hào)為__

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)有,兩個(gè)分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項(xiàng)質(zhì)量指標(biāo)值不低于130的為優(yōu)質(zhì)品.分別從,兩廠中各隨機(jī)抽取100件產(chǎn)品統(tǒng)計(jì)其質(zhì)量指標(biāo)值,得到如圖頻率分布直方圖:

          (1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標(biāo)值的眾數(shù)和中位數(shù)的估計(jì)值;

          (2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為這兩個(gè)分廠的產(chǎn)品質(zhì)量有差異?

          優(yōu)質(zhì)品

          非優(yōu)質(zhì)品

          合計(jì)

          合計(jì)

          (3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再從這10件產(chǎn)品中隨機(jī)抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;

          (ii)將頻率視為概率,從分廠中隨機(jī)抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學(xué)期望.

          附:

          0.100

          0.050

          0.025

          0.010

          0.001

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四棱錐中,平面平面,四邊形為矩形,,,.

          (1)求證:平面

          (2)若直線與平面所成角的正弦值為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定圓,過定點(diǎn)的直線交圓兩點(diǎn).

          1)若,求直線的斜率;

          2)求面積的取值范圍;

          3)若圓內(nèi)一點(diǎn)的坐標(biāo)是,且過點(diǎn)的直線交圓兩點(diǎn),,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案