已知函數(shù)f(x)=x2-4ax+2a+6,x∈R.
(1)若函數(shù)的值域為[0,+∞),求a的值;
(2)若函數(shù)的值域為非負(fù)數(shù)集,求函數(shù)f(a)=2-a|a+3|的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
且
),
.
(1)若在定義域上有極值,求實數(shù)
的取值范圍;
(2)當(dāng)時,若對
,總
,使得
,求實數(shù)
的取值范圍;(其中
為自然對數(shù)的底數(shù))
(3)對,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是
上的奇函數(shù),且當(dāng)
時,
.
(1)求的表達(dá)式;
(2)畫出的圖象,并指出
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)
是奇函數(shù),
(1)求的值;
( 2) 判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f()=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,解不等式f(|x|)<-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=是奇函數(shù).
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)
同時滿足以下三個條件:
(1) 對任意的,總有
;(2)
;(3) 若
,
,且
,則有
成立,則稱
為“友誼函數(shù)”,請解答下列各題:
(1)若已知為“友誼函數(shù)”,求
的值;
(2)函數(shù)在區(qū)間
上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在
,使得
且
, 求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左焦點(diǎn)為
,左、右頂點(diǎn)分別為
,過點(diǎn)
且傾斜角為
的直線
交橢圓于
兩點(diǎn),橢圓
的離心率為
,
.
(1)求橢圓的方程;
(2)若是橢圓上不同兩點(diǎn),
軸,圓
過點(diǎn)
,且橢圓上任意一點(diǎn)都不在圓
內(nèi),則稱圓
為該橢圓的內(nèi)切圓.問橢圓
是否存在過點(diǎn)
的內(nèi)切圓?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com