日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (幾何證明選講)如圖,已知EB是半圓O的直徑,A是BE延長線上一點(diǎn),AC是半圓O的切線BC⊥AC于C,若BC=6,AC=8,則AE=________.


          分析:連接OD證得OD∥BC,由此得比例關(guān)系,再由題設(shè)條件求得AB=10,OD,AO用要求的量AE表示出來,代入比例式即可得到AE的方程,求解既得.
          解答:連接OD,由于AD是半圓O的切線,故角ADO=90°,又BC⊥AC于C可得OD∥BC
          ∵BC=6,AC=8,∴AB=10,∴AE+2R=10,∴R=5-
          由OD∥BC得,即解得AE=
          故答案為
          點(diǎn)評:本題考查直線與圓的位置關(guān)系,及圓內(nèi)的有關(guān)的比例線段,求解本題的關(guān)鍵是由平行關(guān)系得到比例式及用要求的量AE將比例式中的各個(gè)量表示出來.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (選修4-1:幾何證明選講)
          如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,∠ABC=60°,PD=1,BD=8,求線段BC的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (幾何證明選講)如圖,AB、CD是圓O的兩條弦,且AB是線段CD的中垂線,已知AB=10,CD=8,則線段AC的長度為
          4
          5
          4
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)幾何證明選講:如圖,CB是⊙O的直徑,AP是⊙O的切線,A為切點(diǎn),AP與CB的延長線交于點(diǎn)P,若PA=8,PB=4,求AC的長度.
          (2)坐標(biāo)系與參數(shù)方程:在極坐標(biāo)系Ox中,已知曲線C1:ρcos(θ+
          π
          4
          )
          =
          2
          2
          與曲線C2;ρ=1相交于A、B兩點(diǎn),求線段AB的長度.
          (3)不等式選講:解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          選修4-1:幾何證明選講.
          如圖,AB是⊙O的一條切線,切點(diǎn)為B,ADE、CFD、CGE都是⊙O的割線,已知AC=AB.證明:
          (1)AD•AE=AC2;
          (2)FG∥AC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)(幾何證明選講)如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,CD⊥AB,垂足為D,且AD=5DB,設(shè)∠COD=θ,則tanθ的值為
          5
          2
          5
          2

          (2)(坐標(biāo)系與參數(shù)方程)圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ,則經(jīng)過兩圓圓心的直線的直角坐標(biāo)方程為
          x-y-2=0
          x-y-2=0

          (3)(不等式選講)若不等式|3x-b|<4的解集中的整數(shù)有且僅有0,1,2,則b的取值范圍是
          (2,4)
          (2,4)

          查看答案和解析>>

          同步練習(xí)冊答案