日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點(diǎn)為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點(diǎn)F、傾斜角為θ的直線l交橢圓C于M、N兩點(diǎn).

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若θ=90°,,求實(shí)數(shù)m;
          (3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.
          (1)=1.(2)m=(3)無關(guān)
          (1)∵c=4m,橢圓離心率e=,∴a=5m.∴b=3m.
          ∴橢圓C的標(biāo)準(zhǔn)方程為=1.
          (2)在橢圓方程=1中,令x=4m,解得y=±.
          ∵當(dāng)θ=90°時(shí),直線MN⊥x軸,此時(shí)FM=FN=,∴.
          ,∴,解得m=.
          (3)的值與θ的大小無關(guān).
          證明如下:(證法1)設(shè)點(diǎn)M、N到右準(zhǔn)線的距離分別為d1、d2.
          ,,∴.
          又由圖可知,MFcosθ+d1-c=
          ∴d1,即.
          同理,(-cosθ+1).
          (-cosθ+1)=.
          ·.顯然該值與θ的大小無關(guān).
          (證法2)當(dāng)直線MN的斜率不存在時(shí),由(2)知,的值與θ的大小無關(guān).
          當(dāng)直線MN的斜率存在時(shí),設(shè)直線MN的方程為y=k(x-4m),
          代入橢圓方程=1,得(25k2+9)m2x2-200m3k2x+25m4(16k2-9)=0.
          設(shè)點(diǎn)M(x1,y1)、N(x2,y2),∵Δ>0恒成立,∴x1+x2,x1·x2.
          ,∴MF=5m-x1,NF=5m-x2.
          .
          顯然該值與θ的大小無關(guān).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.

          (1)求橢圓的方程和其“準(zhǔn)圓”方程;
          (2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動(dòng)點(diǎn),過點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
          (ⅰ)當(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求直線的方程,
          并證明;
          (ⅱ)求證:線段的長(zhǎng)為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
          (1)求證:=1;
          (2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
          (3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的兩焦點(diǎn)在軸上, 且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成斜邊長(zhǎng)為2的等腰直角三角形
          (1)求橢圓的方程;
          (2)過點(diǎn)的動(dòng)直線交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以AB為直徑的圓恒過點(diǎn)Q?若存在求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,若,且.
          (1)求動(dòng)點(diǎn)的軌跡的方程;
          (2)已知定點(diǎn),若斜率為的直線過點(diǎn)并與軌跡交于不同的兩點(diǎn),且對(duì)于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在同一坐標(biāo)系中,方程的曲線大致是( )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          以雙曲線-3x2+y2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
          (1)求橢圓C的方程;
          (2)當(dāng)△AMN的面積為時(shí),求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,,是雙曲線與橢圓的公共焦點(diǎn),點(diǎn),在第一象限的公共點(diǎn).若|F1F2|=|F1A|,則的離心率是(    ).
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案