日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
          (1)求橢圓C的方程;
          (2)當(dāng)△AMN的面積為時,求k的值.
          (1)=1(2)k=±1.
          (1)由題意得解得b=,所以橢圓C的方程為=1.
          (2)由得(1+2k2)x2-4k2x+2k2-4=0.設(shè)點M,N的坐標(biāo)分別為(x1,y1),(x2,y2),
          則y1=k(x1-1),y2=k(x2-1),x1+x2,x1x2,
          所以MN=.
          又因為點A(2,0)到直線y=k(x-1)的距離d=,所以△AMN的面積為S=MN·d=.由,解得k=±1.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,已知A、BC是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

          (1)求橢圓E的方程;
          (2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標(biāo)),若不存在,請說明理由.
          (3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓C:()的短軸長為2,離心率為
          (1)求橢圓C的方程
          (2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點G、H,設(shè)P為橢圓C上一點,且滿足(O為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.
          (1)若AB=,求k的值;
          (2)求證:不論k取何值,以AB為直徑的圓恒過點M.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若θ=90°,,求實數(shù)m;
          (3)試問的值是否與θ的大小無關(guān),并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若兩曲線在交點P處的切線互相垂直,則稱該兩曲線在點P處正交,設(shè)橢圓與雙曲線在交點處正交,則橢圓的離心率為(  )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標(biāo)為.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          離心率為的橢圓與雙曲線有相同的焦點,且橢圓長軸的端點,短軸的端點,焦點到雙曲線的一條漸近線的距離依次構(gòu)成等差數(shù)列,則雙曲線的離心率等于(      )
          A    B.   C.    D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          橢圓=1的兩焦點為F1、F2,一直線過F1交橢圓于P、Q,則△PQF2的周長為________.

          查看答案和解析>>

          同步練習(xí)冊答案