日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,ABCD是一塊邊長為100m的正方形地皮,其中AST是半徑為90m的扇形小山,其余部分都是平地,一開發(fā)商想在平地上建一個矩形的停車場,使矩形的一個頂點(diǎn)P在圓弧ST上,相鄰兩邊CQ,CR落在正方形的BC,CD邊上,求矩形停車場PQCR面積的最大值與最小值.
          分析:先建立直角坐標(biāo)系,再設(shè)P(90cosx,90sinx),然后過P分別BC與CD的垂線,再求出PR,PQ的長度,然后建立面積模型,再按照函數(shù)模型求解最值.
          解答:精英家教網(wǎng)解:建立如圖所示直角坐標(biāo)系
          設(shè)P(90cosx,90sinx)
          ∴PR=100-90sinx,PQ=100-90cosx
          ∴sPQCR=(100-90sinx)(100-90cosx)
          =10000-9000(sinx+cosx)+8100sinxcosx
          令sinx+cosx=t∈[1,
          2
          ]
          ∴sinxcosx=
          t2-1
          2

          ∴sPQCR=4050t2-9000t+5950,
          ∴當(dāng)t=
          10
          9
          時,取得最小值950
          當(dāng)t=
          2
          時,取得最大值為:14050-9000
          2
          點(diǎn)評:本題主要考查函數(shù)模型的建立與應(yīng)用,要注意先建系,再設(shè)點(diǎn),表示相關(guān)的量,建立模型,最后解模型.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          隨著機(jī)動車數(shù)量的增加,對停車場所的需求越來越大,如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一座半徑為90米的扇形小山,P是弧TS上一點(diǎn),其余部分都是平地,現(xiàn)一開發(fā)商想在平地上建一個邊落在BC和CD上的長方形停車場PQCR.
          (1)設(shè)∠PAB=θ,試寫出停車場PQCR的面積S與θ的函數(shù)關(guān)系式;
          (2)求長方形停車場PQCR面積的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一半徑為80米的扇形小山,P是弧TS上一點(diǎn),其余部分都是平地.現(xiàn)一開發(fā)商想在平地上建造一個有邊落在BC與CD上的長方形停車場PQCR.設(shè)∠PAT為θ,長方形停車場面積為S.
          (1)試寫出S關(guān)于θ的函數(shù);
          (2)求長方形停車場面積S的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2004•黃埔區(qū)一模)如圖,ABCD是一塊邊長為100米的正方形地皮,其中ATPS是一半徑為90米的底面為扇形小山(P為
          TS
          上的點(diǎn)),其余部分為平地.今有開發(fā)商想在平地上建一個邊落在BC及CD上的長方形停車場PQCR.求長方形停車場PQCR面積的最大值及最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,ABCD是一塊矩形鐵板AB=48cm,BC=30cm,剪掉四個陰影部分的小正方形,沿虛線折疊后,焊接成一個無蓋的長方體水箱.
          (Ⅰ)寫出水箱的容積V與水箱高度x的函數(shù)表達(dá)式,并求其定義域;
          (Ⅱ)當(dāng)水箱高度x為何值時,水箱的容積V最大,并求出其最大值.

          查看答案和解析>>

          同步練習(xí)冊答案