日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).
          (Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
          (Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值.

          【答案】解:(Ⅰ)當(dāng)a=﹣2時(shí),f(x)=x2﹣2lnx,當(dāng)x∈(1,+∞), ,

          故函數(shù)f(x)在(1,+∞)上是增函數(shù).

          (Ⅱ) ,當(dāng)x∈[1,e],2x2+a∈[a+2,a+2e2].

          若a≥﹣2,f'(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時(shí),f'(x)=0),

          故函數(shù)f(x)在[1,e]上是增函數(shù),此時(shí)[f(x)]min=f(1)=1.

          若﹣2e2<a<﹣2,當(dāng) 時(shí),f'(x)=0;當(dāng) 時(shí),f'(x)<0,

          此時(shí)f(x)是減函數(shù);當(dāng) 時(shí),f'(x)>0,此時(shí)f(x)是增函數(shù).

          故[f(x)]min= =

          若a≤﹣2e2,f'(x)在[1,e]上非正(僅當(dāng)a=﹣2e2,x=e時(shí),f'(x)=0),

          故函數(shù)f(x)在[1,e]上是減函數(shù),此時(shí)[f(x)]min=f(e)=a+e2

          綜上可知,當(dāng)a≥﹣2時(shí),f(x)的最小值為1,相應(yīng)的x值為1;

          當(dāng)﹣2e2<a<﹣2時(shí),f(x)的最小值為 ,相應(yīng)的x值為 ;

          當(dāng)a≤﹣2e2時(shí),f(x)的最小值為a+e2,相應(yīng)的x值為e


          【解析】(Ⅰ)將a=﹣2代入,然后求出導(dǎo)函數(shù)f'(x),欲證函數(shù)f(x)在(1,+∞)上是增函數(shù)只需證導(dǎo)函數(shù)在(1,+∞)上恒大于零即可;(Ⅱ)先求出導(dǎo)函數(shù)f'(x),然后討論a研究函數(shù)在[1,e]上的單調(diào)性,將f(x)的各極值與其端點(diǎn)的函數(shù)值比較,其中最小的一個(gè)就是最小值.
          【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工程設(shè)備租賃公司為了調(diào)查A,B兩種挖掘機(jī)的出租情況,現(xiàn)隨機(jī)抽取了這兩種挖掘機(jī)各100臺(tái),分別統(tǒng)計(jì)了每臺(tái)挖掘機(jī)在一個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表: A型車(chē)挖掘機(jī)

          出租天數(shù)

          1

          2

          3

          4

          5

          6

          7

          車(chē)輛數(shù)

          5

          10

          30

          35

          15

          3

          2

          B型車(chē)挖掘機(jī)

          出租天數(shù)

          1

          2

          3

          4

          5

          6

          7

          車(chē)輛數(shù)

          14

          20

          20

          16

          15

          10

          5

          (Ⅰ)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),將頻率視為概率,求該公司一臺(tái)A型挖掘機(jī),一臺(tái)B型挖掘機(jī)一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
          (Ⅱ)如果A,B兩種挖掘機(jī)每臺(tái)每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種挖掘機(jī)中購(gòu)買(mǎi)一臺(tái),請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買(mǎi)哪一種類(lèi)型,并說(shuō)明你的理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過(guò)D點(diǎn)作DF⊥CE,垂足為F.
          (Ⅰ)證明:B,C,G,F(xiàn)四點(diǎn)共圓;
          (Ⅱ)若AB=1,E為DA的中點(diǎn),求四邊形BCGF的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是邊長(zhǎng)為1的正方形且互相垂直,D為AA1的中點(diǎn),E為BC1的中點(diǎn).
          (Ⅰ)證明:DE∥平面A1B1C1
          (Ⅱ)求平面C1BD和平面CBD所成的角(銳角)的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)= ,且g(x)=f(x)+ 有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
          (Ⅰ)證明:PA⊥BD;
          (Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】“歐幾里得算法”是有記載的最古老的算法,可追溯至公元前300年前,如圖的程序框圖的算法思路就是來(lái)源于“歐幾里得算法”.執(zhí)行改程序框圖(圖中“aMODb”表示a除以b的余數(shù)),若輸入的a,b分別為675,125,則輸出的a=(
          A.0
          B.25
          C.50
          D.75

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列{an}滿(mǎn)足:a1=1,an+1=3an , n∈N* . 設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*
          (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)cn=bnlog3an , 求數(shù)列{cn}的前n項(xiàng)和Tn;
          (Ⅲ)證明:對(duì)任意n∈N*且n≥2,有 + +…+

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值為2,則空白判斷框中的條件可能為(
          A.x>3
          B.x>4
          C.x≤4
          D.x≤5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案