日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N+).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)已知數(shù)列{bn}滿足,,求證:對(duì)一切正整數(shù)n≥1都有<2.
          【答案】分析:(1)由,an+1=f(an)(n∈N+)知:,由此能求出
          (2)由bn+1=(1+bn2,知bn+1=bn(bn+1),故=,由此利用裂項(xiàng)求法能夠證明對(duì)一切正整數(shù)n≥1都有<2.
          解答:(1)解:∵,an+1=f(an)(n∈N+),
          ,…1分
          =,…..3分
          =1,…5分
          ∴{}是以為首項(xiàng),1為公差的等差數(shù)列,
          ,
          .…6分
          (2)證明:由已知得bn+1=(1+bn2,
          ∴bn+1=bn(bn+1),顯然bn∈(0,+∞),…7分
          =====,…9分

          =()+()+…+(
          =
          =2-<2.…11分
          所以,對(duì)一切正整數(shù)n≥1都有<2.…12分
          點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法和不等式的證明,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意裂項(xiàng)求和法的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=ax+b,當(dāng)x∈[a1,b1]時(shí)值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí)值域?yàn)閇a3,b3],當(dāng)x∈[an-1,bn-1]時(shí)值域?yàn)閇an,bn]…其中a、b為常數(shù),a1=0,b1=1
          (1)若a=1,b=2,求數(shù)列{an}和{bn}的通項(xiàng)公式.
          (2)若a>0,a≠1,要使數(shù)列{bn}是公比不為1的等比數(shù)列,求b的值.
          (3)若a>0,設(shè)數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,求Tn-Sn的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x+1-aa-x
          ,a∈R
          .利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于定義域中給定的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n∈N*),…如果取定義域中任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無窮數(shù)列{xn}.
          (1)求實(shí)數(shù)a的值;
          (2)若x1=1,求(x1+1)(x2+1)…(xn+1)的值;
          (3)設(shè)Tn=(x1+1)(x2+1)…(xn+1)(n∈N*),試問:是否存在n使得Tn+Tn+1+…+Tn+2006=2006成立,若存在,試確定n及相應(yīng)的x1的值;若不存在,請(qǐng)說明理由?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
          2
          x
          1-x
          ,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
          (1)若x1+x2=1,求證:y1+y2為定值;
          (2)設(shè)Tn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
          (3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問是否存在角a,使不等式(1-
          1
          a1
          )(1-
          1
          a2
          )
          (1-
          1
          an
          )<
          sinα
          2n+1
          對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高二版(A必修5) 2009-2010學(xué)年 第5期 總第161期 人教課標(biāo)版(A必修5) 題型:044

          已知函數(shù)f(x)=(a,b為常數(shù),a≠0),滿足f(2)=1,且f(x)=x有兩個(gè)相同的根.

          (1)求f(x)的表達(dá)式;

          (2)設(shè)數(shù)列{xn}滿足xn+1=f(xn),且x1>0,證明數(shù)列{}是等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(福建卷)、數(shù)學(xué)(理) 題型:044

          已知函數(shù)

          (Ⅰ)設(shè){an}是正數(shù)組成的數(shù)列,前n項(xiàng)和為Sn,其中a1=3.若點(diǎn)(n∈N*)在函數(shù)y的圖象上,求證:點(diǎn)(n,Sn)也在y的圖象上;

          (Ⅱ)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案