日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】時下,網(wǎng)校教學越來越受到廣大學生的喜愛,它已經(jīng)成為學生們課外學習的一種趨勢,假設某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價格(單位:元/套)滿足的關(guān)系式,其中為常數(shù).已知銷售價格為4/套時,每日可售出套題21千套.

          1)求的值;

          2)假設網(wǎng)校的員工工資,辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.(保留1位小數(shù))

          【答案】(1)10.

          (2)當銷售價格為3.3元/套時,網(wǎng)校每日銷售套題所獲得的利潤最大.

          【解析】

          1)當時,,代入,求出;

          2)每日銷售套題所獲得的利潤等于每日的銷售量乘以每套題的利潤,整理得每日銷售套題所獲得的利潤,求導數(shù)研究單調(diào)性可求出銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.

          解:(1)因為時,,

          代入關(guān)系式,得,

          解得.

          2)由(1)可知,套題每日的銷售量,

          所以每日銷售套題所獲得的利潤

          ,從而.

          ,得,且在,,函數(shù)單調(diào)遞增;在上,,函數(shù)單調(diào)遞減,

          所以是函數(shù)內(nèi)的極大值點,也是最大值點,

          所以當時,函數(shù)取得最大值.

          故當銷售價格為3.3/套時,網(wǎng)校每日銷售套題所獲得的利潤最大.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,并且b=2
          (1)若角A,B,C成等差數(shù)列,求△ABC外接圓的半徑;
          (2)若三邊a,b,c成等差數(shù)列,求△ABC內(nèi)切圓半徑的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱臺ABCD﹣A1B1C1D1中,底面ABCD為平行四邊形,∠BAD=120°,M為CD上的點.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
          (1)求證:AM⊥A1B;
          (2)若M為CD的中點,N為棱DD1上的點,且MN與平面A1BD所成角的正弦值為 ,試求DN的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】圓錐的軸截面SAB是邊長為2的等邊三角形,O為底面中心,M為SO的中點,動點P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點形成的軌跡的長度為

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】富華中學的一個文學興趣小組中,三位同學張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進行性格研究,并且他們選擇的名家各不相同.三位同學一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

          (Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

          (Ⅱ)若函數(shù)無零點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)討論函數(shù)的單調(diào)性;

          (2)若不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          ,求函數(shù)的單調(diào)區(qū)間;

          若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an}是各項均為正數(shù)的等差數(shù)列,其中a1=1,且a2、a4、a6+2成等比數(shù)列;數(shù)列{bn}的前n項和為Sn , 滿足2Sn+bn=1
          (1)求數(shù)列{an}、{bn}的通項公式;
          (2)如果cn=anbn , 設數(shù)列{cn}的前n項和為Tn , 求證:Tn<Sn+

          查看答案和解析>>

          同步練習冊答案