日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為t為參數(shù)),點(diǎn)A1,0),B3),若以直角坐標(biāo)系xOyO點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸,且長度單位相同,建立極坐標(biāo)系.

          1)求直線AB的極坐標(biāo)方程;

          2)求直線AB與曲線C交點(diǎn)的極坐標(biāo).

          【答案】12

          【解析】

          1)由點(diǎn)A、B寫出直線AB的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可;

          2)把曲線C的參數(shù)方程化為普通方程,求出直線與曲線的交點(diǎn),再化為極坐標(biāo)即可.

          1)由點(diǎn)A1,0),B3,),

          所以直線AB的直角坐標(biāo)方程為:,

          化為極坐標(biāo)方程是:;

          2)曲線C的參數(shù)方程是t為參數(shù)),

          消去參數(shù),化為普通方程是:y2xy0);

          ,解得,

          即交點(diǎn)的直角坐標(biāo)為;

          化為極坐標(biāo)是:.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),給出下列四個(gè)結(jié)論:

          ①函數(shù)的最小正周期是

          ②函數(shù)在區(qū)間上是減函數(shù);

          ③函數(shù)的圖象關(guān)于直線對(duì)稱;

          ④函數(shù)的圖象可由函數(shù)的圖象向左平移個(gè)單位得到其中所有正確結(jié)論的編號(hào)是(

          A.①②B.①③C.①②③D.①③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),在矩形中,在邊上,.沿折起,使平面和平面都與平面垂直,連接,如圖(2.

          1)證明:;

          2)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A為曲線上的動(dòng)點(diǎn),點(diǎn)B在線段OA的延長線上,且滿足,點(diǎn)B的軌跡為

          (1)求,的極坐標(biāo)方程;

          (2)設(shè)點(diǎn)C的極坐標(biāo)為(2,0),求△ABC面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n三位遞增數(shù)”(137,359,567).

          在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的三位遞增數(shù)中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.得分規(guī)則如下:若抽取的三位遞增數(shù)的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.

          (1)寫出所有個(gè)位數(shù)字是5三位遞增數(shù)”;

          (2)若甲參加活動(dòng),求甲得分X的分布列和數(shù)學(xué)期望E(X).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

          0項(xiàng)

          1項(xiàng)

          2項(xiàng)

          3項(xiàng)

          4項(xiàng)

          5項(xiàng)

          5項(xiàng)以上

          理科生(人)

          1

          10

          17

          14

          14

          10

          4

          文科生(人)

          0

          8

          10

          6

          3

          2

          1

          (1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

          比較了解

          不太了解

          合計(jì)

          理科生

          文科生

          合計(jì)

          (2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

          (i)求抽取的文科生和理科生的人數(shù);

          (ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

          參考數(shù)據(jù):

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某貧困地區(qū)共有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450.為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元).

          1)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?

          2)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(00.5],(0.51],(11.5],(1.5,2],(2,2.5],(2.5,3].如果將頻率視為概率,估計(jì)該地區(qū)2017年家庭收入超過1.5萬元的概率;

          3)樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?

          超過2萬元

          不超過2萬元

          總計(jì)

          平原地區(qū)

          山區(qū)

          5

          總計(jì)

          附:

          PK2k0

          0.100

          0.050

          0.010

          0.001

          k0

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為拋物線上的一點(diǎn),,為拋物線上異于點(diǎn)的兩點(diǎn),且直線的斜率與直線的斜率互為相反數(shù).

          1)求直線的斜率;

          2)設(shè)直線過點(diǎn)并交拋物線于兩點(diǎn),且,直線軸交于點(diǎn),試探究的夾角是否為定值,若是則求出定值,若不是,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案