日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量
          x
          =(1,t2-3 ),
          y
          =(-k,t) (其中實數(shù)k和t不同時為零),當(dāng)|t|<2時,有
          x
          y
          ,當(dāng)|t|>2時,有
          x
          y

          (1)求函數(shù)關(guān)系式k=f (t );
          (2)求函數(shù)f (t )的單調(diào)遞減區(qū)間;
          (3)求函數(shù)f (t )的最大值和最小值.
          分析:(1)利用向量垂直的充要條件及向量共線的充要條件列出關(guān)于k,t的方程,分離出k即為函數(shù)關(guān)系式k=f (t );
          (2)分段求出函數(shù)的導(dǎo)函數(shù),求出導(dǎo)函數(shù)小于0的x的范圍,寫出區(qū)間形式即得到函數(shù)f (t )的單調(diào)遞減區(qū)間.
          (3)利用(2)求出函數(shù)的極值.再求出區(qū)間的兩個端點的函數(shù)值,選出最值.
          解答:解:(1)當(dāng)|t|<2時,由
          x
          y
          得:
          x
          y
          =-k+(t2-3)t=0,
          得k=f(t)=t3-3t(|t|<2)
          當(dāng)|t|>2時,由
          x
          y
          得:k=
          -t
          t2-3

          所以k=f(t)=
          t3-3t當(dāng)-2≤t≤2時
          t
          3-t2
          當(dāng)t<-2或t>2時
          (5分)
          (2)當(dāng)|t|<2時,f′(t)=3t2-3,由f′(t)<0,得3t2-3<0
          解得-1<t<1,
          當(dāng)|t|>2時,f′(t)=
          (3-t2)-t(-2t)
          (3-t2)2
          =
          3+t2
          (3-t2)2
          >0
          ∴函數(shù)f(t)的單調(diào)遞減區(qū)間是(-1,1).(4分)
          (3)當(dāng)|t|<2時,由f′(t)=3t2-3=0得t=1或t=-1
          ∵1<|t|<2時,f′(t)>0
          ∴f(t)極大值=f(-1)=2,f(t)極小值=f(1)=-2
          又f(2)=8-6=2,f(-2)=-8+6=-2
          當(dāng)t>2時,f(t)=
          -t
          t2-3
          <0,
          又由f′(t)>0知f(t)單調(diào)遞增,∴f(t)>f(2)=-2,
          即當(dāng)t>2時,-2<f(t)<0,
          同理可求,當(dāng)t<-2時,有0<f(t)<2,
          綜合上述得,當(dāng)t=-1或t=2時,f(t)取最大值2
          當(dāng)t=1或t=-2時,f(t)取最小值-2(5分)
          點評:求分段函數(shù)的單調(diào)區(qū)間及極值、最值應(yīng)該分段求,再選出最值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:杭州一模 題型:解答題

          已知向量
          x
          =(1,t2-3 ),
          y
          =(-k,t) (其中實數(shù)k和t不同時為零),當(dāng)|t|<2時,有
          x
          y
          ,當(dāng)|t|>2時,有
          x
          y

          (1)求函數(shù)關(guān)系式k=f (t );
          (2)求函數(shù)f (t )的單調(diào)遞減區(qū)間;
          (3)求函數(shù)f (t )的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂市沂南一中高三(上)第二次質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

          已知向量=,=(1,t),若函數(shù)f(x)=在區(qū)間上存在增區(qū)間,則t的取值范圍   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年山東省煙臺市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:填空題

          已知向量=,=(1,t),若函數(shù)f(x)=在區(qū)間上存在增區(qū)間,則t的取值范圍   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年山東省萊蕪一中高三4月自主檢測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知向量=,=(1,t),若函數(shù)f(x)=在區(qū)間上存在增區(qū)間,則t的取值范圍   

          查看答案和解析>>

          同步練習(xí)冊答案