日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的內(nèi)接等腰△ABC的頂點(diǎn)A的坐標(biāo)為(0,b),其底邊BC上的高在y軸上,若△ABC的面積不超過
          3
          2
          b2
          ,則橢圓離心率的取值范圍為( 。
          A、(0,
          1
          2
          ]
          B、[
          1
          2
          ,1)
          C、(0,
          3
          2
          ]
          D、[
          3
          2
          ,1)
          分析:首先設(shè)點(diǎn)B(acosx,bsintx) C(-acosx,bsinx),進(jìn)而求得底邊、高、面積得出恒有(1-sinx)cosx≤
          3b
          2a
          ,再根據(jù)c2=a2-b2,就能得到答案.
          解答:解:∵△ABC為等腰三角形.
          ∴可設(shè)點(diǎn)B(acosx,bsinx) C(-acosx,bsinx).其中-
          π
          2
          <x<
          π
          2

          此時(shí)易知,該三角形底邊BC=2acosx,高=b(1-sinx)
          ∴S=ab(1-sinx)cosx
          由題設(shè)可得ab(1-sinx)cosx≤
          3
          2
          b2

          ∴恒有(1-sinx)cosx≤
          3b
          2a

          3
          3
          4
          3b
          2a

          整理可得,
          3
          a≤2b
          兩邊平方,3a2≤4b2=4(a2-c2
          ∴4c2≤a2
          c
          a
          1
          2

          故選A.
          點(diǎn)評:本題考查了橢圓的簡單性質(zhì),本題采用參數(shù)方法使問題變得簡單化,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1、F2,離心率e=
          2
          2
          ,右準(zhǔn)線方程為x=2.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
          F2M
          +
          F2N
          |=
          2
          26
          3
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,橢圓
          x2
          a2
          +
          y2
          b 
          =1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
          3
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
          1
          2
          |AF1||AF2|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,橢圓
          x2
          a2
          +
          y2
          b 
          =1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=
          3
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè) A(x1,y1)、B(x2,y2)是橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
          m
          =(
          x1
          a
          y1
          b
          ),
          n
          =(
          x2
          a
          ,
          y2
          b
          )
          m
          n
          =0

          (1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
          (2)設(shè)
          OM
          =cosθ•
          OA
          +sinθ•
          OB
          ,證明點(diǎn)M在橢圓上;
          (3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
          PQ
          OB
          ,試問:線段PQ能否被直線OA平分?若能平分,請加以證明;若不能平分,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1、F2,離心率e=
          2
          2
          ,右準(zhǔn)線方程為x=2.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
          F2M
          +
          F2N
          |=
          2
          26
          3
          ,求直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊答案