【題目】為了了解某校九年級400名學(xué)生的體質(zhì)情況,隨機抽查了20名學(xué)生,測試1 min仰臥起坐的成績(次數(shù)),測試成績?nèi)缦拢?/span>
30 35 32 33 28 36 34 28 25 40
28 32 30 42 37 36 33 31 26 24
(1)20名學(xué)生的平均成績是多少?標(biāo)準(zhǔn)差
是多少?
(2)次數(shù)位于與
之間有多位同學(xué)?所占的百分比是多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓心為點
,點
是圓
內(nèi)一個定點,
是圓上任意一點,線段
的垂直平分線
和半徑
相交于點
在圓上運動.
(l)求動點的軌跡
的方程;
(2)若為曲線
上任意一點,
|的最大值;
(3)經(jīng)過點且斜率為
的直線交曲線
于
兩點在
軸上是否存在定點
,使得
恒成立?若存在,求出點
坐標(biāo):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù):若存在閉區(qū)間
和常數(shù)e,使得對任意
,都有
,且對任意
,當(dāng)
時,
恒成立,則稱函數(shù)
為區(qū)間D上的“平底型”函數(shù).
(1)判斷函數(shù)和
是否為R上的“平底型”函數(shù)?并說明理由;
(2)若函數(shù)是區(qū)間
上的“平底型”函數(shù),求m和n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人參加某體育項目訓(xùn)練,近期的五次測試成績得分情況如圖所示.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
1
證明直線l經(jīng)過定點并求此點的坐標(biāo);
2
若直線l不經(jīng)過第四象限,求k的取值范圍;
3
若直線l交x軸負(fù)半軸于點A,交y軸正半軸于點B,O為坐標(biāo)原點,設(shè)
的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側(cè)面
底面
,
,
.
(Ⅰ)求證:平面面
;
(Ⅱ)過的平面交
于點
,若平面
把四面體
分成體積相等的兩部分,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,,
(
),其中數(shù)列
、
都是遞增數(shù)列.
(1)若,
,判斷直線
與
是否平行;
(2)若數(shù)列、
都是正項等差數(shù)列,它們的公差分別為
、
,設(shè)四邊形
的面積為
(
),求證:
也是等差數(shù)列;
(3)若,
(
),
,記直線
的斜率為
,數(shù)列
前8項依次遞減,求滿足條件的數(shù)列
的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點
的直線l的參數(shù)方程為
(t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
與曲線C相交于不同的兩點M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-7x+10<0,q:x2-4mx+3m2<0,其中m>0.
(1)若m=3,p和q都是真命題,求x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com