【題目】已知等軸雙曲線:
的右焦點(diǎn)為
,
為坐標(biāo)原點(diǎn),過
作一條漸近線的垂線
且垂足為
,
.
(1)求等軸雙曲線的方程;
(2)若過點(diǎn)且方向向量為
的直線
交雙曲線
于
、
兩點(diǎn),求
的值;
(3)假設(shè)過點(diǎn)的動直線
與雙曲線
交于
、
兩點(diǎn),試問:在
軸上是否存在定點(diǎn)
,使得
為常數(shù),若存在,求出
的坐標(biāo),若不存在,試說明理由.
【答案】(1);(2)
;(3)定點(diǎn)
.
【解析】
(1)根據(jù)雙曲線焦點(diǎn)到漸近線的距離為和等軸雙曲線的性質(zhì),求得等軸雙曲線
的方程.
(2)由直線的方向向量求得直線
的斜率,由此寫出直線
的方程.聯(lián)立直線
的方程和雙曲線的方程,寫出韋達(dá)定理,求得
,
,由此求得
的值.
(3)設(shè),設(shè)出直線
的方程,與雙曲線方程聯(lián)立,寫出韋達(dá)定理,代入
進(jìn)行化簡,結(jié)合
為常數(shù)列方程,解方程求得
點(diǎn)的坐標(biāo).
(1)雙曲線焦點(diǎn)到漸近線的距離為,所以
,所以等軸雙曲線
的方程為
.且
.
(2)由于直線的方向行向量為
,所以直線
的斜率為
,而
,所以
:
,與
聯(lián)立方程并化簡得
,可得
,
,
即.
(3)設(shè)點(diǎn)
.依題意可知直線
與
不平行,設(shè)直線
,與
聯(lián)立方程有
,
可得,
,∴
,
,
,要為定值,
需滿足,∴
,即定點(diǎn)
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程
.
(1)若是從0,1,2,3,4五個數(shù)中任取的一個數(shù),
是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若是從區(qū)間
上任取的一個數(shù),
是從區(qū)間
上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績列前三名,有,
,
三位學(xué)生對其排名猜測如下:
:甲第一名,乙第二名;
:丙第一名;甲第二名;
:乙第一名,甲第三名.成績公布后得知,
,
,
三人都恰好猜對了一半,則第一名是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線的焦點(diǎn),過F且傾斜角為
的直線交拋物線于A,B兩點(diǎn),
.
(1)求拋物線的方程:
(2)已知為拋物線上一點(diǎn),M,N為拋物線上異于P的兩點(diǎn),且滿足
,試探究直線MN是否過一定點(diǎn)?若是,求出此定點(diǎn);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半圓:
,
、
分別為半圓
與
軸的左、右交點(diǎn),直線
過點(diǎn)
且與
軸垂直,點(diǎn)
在直線
上,縱坐標(biāo)為
,若在半圓
上存在點(diǎn)
使
,則
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為
,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于
、
兩點(diǎn)
①若線段中點(diǎn)的橫坐標(biāo)為
,求斜率
的值;
②已知點(diǎn),求證:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)袋中裝有黑色球和白色球共7個,從中任取2個球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個球在每一次被摸出的機(jī)會都是等可能的,用X表示摸球終止時所需摸球的次數(shù).
(1)求隨機(jī)變量X的分布列和均值E(X);
(2)求甲摸到白色球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年7月18日15時,超強(qiáng)臺風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元,適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
(1)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的分布列和數(shù)學(xué)期望.
附:臨界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
參考公式:,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com