日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+數(shù)學公式有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

          解:由題設(shè)x1+x2=a,x1x2=-2,
          ∴|x1-x2|==
          當a∈[1,2]時,的最小值為3.
          要使|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.
          由已知,得f(x)=3x2+2mx+m+=0的判別式
          △=4m2-12(m+)=4m2-12m-16>0,
          得m<-1或m>4.
          綜上,要使“p且q”為真命題,只需P真Q真,即 ,
          解得實數(shù)m的取值范圍是(4,8].
          分析:利用二次方程的韋達定理求出|x1-x2|,將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值,求出命題p為真命題時m的范圍;利用二次方程有兩個不等根判別式大于0,求出命題Q為真命題時m的范圍;p且q為真轉(zhuǎn)化為兩個命題全真,求出m的范圍.
          點評:本題考查二次方程的韋達定理、二次方程有根的判斷、復(fù)合命題的真假與構(gòu)成其簡單命題的真假的關(guān)系能及恒成立問題,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+
          43
          有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年四川省高二下學期第二階段(半期)考試文科數(shù)學試卷(解析版) 題型:解答題

          已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為假命題、“p或q”為真命題的實數(shù)m的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+
          4
          3
          有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:《集合與簡易邏輯》2013年山東省淄博市高三數(shù)學復(fù)習(理科)(解析版) 題型:解答題

          已知m∈R,對p:x1和x2是方程x2-ax-2=0的兩個根,不等式|m-5|≤|x1-x2|對任意實數(shù)a∈[1,2]恒成立;q:函數(shù)f(x)=3x2+2mx+m+有兩個不同的零點.求使“p且q”為真命題的實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習冊答案