日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          12
          x2+x
          ,g(x)=2a2lnx+(a+1)x.
          (1)求過點(2,4)與曲線y=f(x)相切的切線方程;
          (2)如果函數(shù)g(x)在定義域內(nèi)存在導(dǎo)數(shù)為零的點,求實數(shù)a的取值范圍;
          (3)設(shè)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)遞增區(qū)間.
          分析:(1)先求出f′(x),欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=2處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而問題解決.
          (2)先求出導(dǎo)數(shù)g′(x)=
          2a2
          x
          +(a+1)
          ,若g'(x)=0,解得x=-
          2a2
          a+1
          利用x>0即可實數(shù)a的取值范圍;
          (3)先求出函數(shù)的定義域,求出函數(shù)f(x)的導(dǎo)函數(shù),在定義域下令導(dǎo)函數(shù)大于0得到函數(shù)的遞增區(qū)間,令導(dǎo)函數(shù)小于0得到函數(shù)的遞減區(qū)間.
          解答:解:(1)f'(x)=x+1,∵點(2,4)在曲線上,∴k=f'(2)=3
          ∴所求的切線方程為y-4=3(x-2),即y=3x-2…(3分)
          (2)g′(x)=
          2a2
          x
          +(a+1)

          若g'(x)=0,則x=-
          2a2
          a+1

          x=-
          2a2
          a+1
          >0
          ,∴a<-1.                             …(6分)
          (3)h(x)=
          1
          2
          x2+x-2a2lnx-(a+1)x=
          1
          2
          x2-2a2lnx-ax(x>0)
          h′(x)=x-
          2a2
          x
          -a=
          x2-ax-2a2
          x
          ≥0

          (x-2a)(x+a)
          x
          ≥0
          …(11分)
          當(dāng)a>0時,單調(diào)遞增區(qū)間為[2a,+∞)
          當(dāng)a=0時,單調(diào)遞增區(qū)間為(0,+∞)
          當(dāng)a<0時,單調(diào)遞增區(qū)間為[-a,+∞)…(14分)
          點評:本小題主要考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,考查直線的斜率、導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識,考查運算求解能力,求函數(shù)的單調(diào)區(qū)間,應(yīng)該先求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0得到函數(shù)的遞增區(qū)間,令導(dǎo)函數(shù)小于0得到函數(shù)的遞減區(qū)間.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個極大值點;
          ②?x∈(8,+∞),f(x)>0.
          則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實數(shù)a的取值范圍;
          (2)當(dāng)x≥1時,不等式f(x)≥
          k
          x+1
          恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案