日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知離心率為
          3
          2
          的橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上的點(diǎn)到左焦點(diǎn)F的最長(zhǎng)距離為
          3
          +2

          (1)求橢圓的方程;
          (2)如圖,過(guò)橢圓的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線(xiàn),則稱(chēng)點(diǎn)M為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”M的坐標(biāo).
          分析:(1)利用橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          離心率為
          3
          2
          ,其上的點(diǎn)到左焦點(diǎn)F的最長(zhǎng)距離為
          3
          +2
          ,可建立方程組,即可求得橢圓的方程;
          (2)設(shè)M(m,0)為橢圓的左特征點(diǎn),根據(jù)橢圓左焦點(diǎn),設(shè)直線(xiàn)AB方程代入橢圓方程,由∠AMB被x軸平分,kAM+kBM=0,利用韋達(dá)定理,即可求得結(jié)論.
          解答:解:(1)由題意知
          a+c=
          3
          +2
          c
          a
          =
          3
          2
          ,∴a=2,c=
          3
          ,∴b=
          a2-c2
          =1

          ∴橢圓的方程為
          x2
          4
          +y2 =1
          ;
          (2)設(shè)M(m,0)為橢圓
          x2
          4
          +y2 =1
          的左特征點(diǎn),橢圓的左焦點(diǎn)F(-
          3
          ,0),
          可設(shè)直線(xiàn)AB的方程為x=ky-
          3
          (k≠0)
          代入
          x2
          4
          +y2 =1
          ,得:(ky-
          3
          )y2+4y2=4,即(k2+4)y2-2
          3
          ky-1=0,
          設(shè)A(x1,y1),B(x2,y2)得y1+y2=
          2
          3
          k
          k2+4
          ,y1y2=-
          1
          k2+4

          ∵∠AMB被x軸平分,kAM+kBM=0,即
          y1
          x1-m
          +
          y2
          x2-m
          =0
          ,
          即y1(ky2-
          3
          )+y2(ky1-
          3
          )-(y1+y2)m=0
          所以,2ky1y2-(y1+y2)(m+
          3
          )=0
          于是,2k×(-
          1
          k2+4
          )-
          2
          3
          k
          k2+4
          ×(m+
          3
          )=0
          ∵k≠0,∴1+
          3
          (m+
          3
          )=0,即m=-
          4
          3
          3
          ,∴M(-
          4
          3
          3
          ,0)
          點(diǎn)評(píng):本題以新定義為載體主要考查了橢圓性質(zhì)的應(yīng)用,直線(xiàn)與橢圓相交關(guān)系的處理,要注意解題中直線(xiàn)AB得方程設(shè)為x=ky-2(k≠0)的好處在于避免討論直線(xiàn)的斜率是否存在.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化三模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(
          3
          3
          2
          )
          ,離心率e=
          1
          2
          ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          ,
          y0
          b
          )
          稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線(xiàn)l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的方程;
          (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,F(xiàn)1,F(xiàn)2為橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率e=
          3
          2
          ,S△DEF2=1-
          3
          2
          .若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          y0
          b
          )稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”.直線(xiàn)l與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,已知以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•懷化二模)如圖展示了一個(gè)由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間(0,k)中的實(shí)數(shù)m對(duì)應(yīng)線(xiàn)段AB上的點(diǎn)M,如圖1;將線(xiàn)段AB圍成一個(gè)離心率為
          3
          2
          的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,已知此時(shí)點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過(guò)程中,圖1中線(xiàn)段AM的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線(xiàn)AM與直線(xiàn)y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對(duì)應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

          現(xiàn)給出下列5個(gè)命題①f(
          k
          2
          )=6
          ;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
          k
          2
          ,0)
          對(duì)稱(chēng);⑤函數(shù)f(m)=3
          3
          時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:懷化三模 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          過(guò)點(diǎn)(
          3
          3
          2
          )
          ,離心率e=
          1
          2
          ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
          x0
          a
          ,
          y0
          b
          )
          稱(chēng)為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線(xiàn)l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
          (1)求橢圓C的方程;
          (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案