日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)().

          (Ⅰ)若處的切線過點(diǎn),求的值;

          (Ⅱ)若恰有兩個(gè)極值點(diǎn),().

          (ⅰ)求的取值范圍;

          (ⅱ)求證:.

          【答案】(Ⅰ) (Ⅱ) (ⅰ) (ⅱ)見證明

          【解析】

          (Ⅰ)對(duì)函數(shù)進(jìn)行求導(dǎo),然后求出在處的切線的斜率,求出切線方程,把點(diǎn)代入切線方程中,求出的值;

          (Ⅱ) (ⅰ) ,,,分類討論函數(shù)的單調(diào)性;

          當(dāng)時(shí),可以判斷函數(shù)沒有極值,不符合題意;

          當(dāng)時(shí),可以證明出函數(shù)有兩個(gè)極值點(diǎn),故可以求出的取值范圍;

          由(ⅰ)知上單調(diào)遞減,,且,

          ,又

          .

          法一:先證明)成立,應(yīng)用這個(gè)不等式,利用放縮法可以證明出成立;

          法二:令(),求導(dǎo),利用單調(diào)性也可以證明出

          成立.

          解:(Ⅰ),

          處的切線方程為,即

          切線過點(diǎn),

          (Ⅱ)(ⅰ) ,

          當(dāng)時(shí),,上單調(diào)遞增,無極值,不合題意,舍去

          當(dāng)時(shí),令,得,(),

          ;上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,恰有個(gè)極值點(diǎn),,符合題意,

          的取值范圍是

          (ⅱ)由(ⅰ)知上單調(diào)遞減,,且,

          ,又

          法一:下面證明),令),,

          上單調(diào)遞增,,即),

          綜上

          法二:令(),則,

          上單調(diào)遞增,,即,

          綜上

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求的普通方程和的直角坐標(biāo)方程;

          (2)若過點(diǎn)的直線交于,兩點(diǎn),與交于兩點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】據(jù)報(bào)道,某公司的33名職工的月工資(以元為單位)如下:

          職務(wù)

          董事長

          副董事長

          董事

          總經(jīng)理

          經(jīng)理

          管理員

          職員

          人數(shù)

          1

          1

          2

          1

          5

          3

          20

          工資

          5500

          5500

          3500

          3000

          2500

          2000

          1500

          1)求該公司職工月工資的平均數(shù)(精確到元);

          2)假設(shè)副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數(shù)又是什么?(精確到元)

          3)你認(rèn)為工資的平均數(shù)能反映這個(gè)公司員工的工資水平嗎?結(jié)合此問題談一談你的看法.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,點(diǎn)的坐標(biāo)為,點(diǎn)在拋物線上,且滿足,(為坐標(biāo)原點(diǎn)).

          (1)求拋物線的方程;

          (2)過點(diǎn)作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點(diǎn),與拋物線交于兩點(diǎn),線段的中點(diǎn)分別為,求證:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來每件售價(jià)為25元,年銷售8萬件.

          (1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?

          (2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到元.公司擬投入萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

          (Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;

          (Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺(tái)的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:

          1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);

          2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為豐富市民的文化生活,市政府計(jì)劃在一塊半徑為200m,圓心角為的扇形地上建造市民廣場(chǎng),規(guī)劃設(shè)計(jì)如圖:內(nèi)接梯形區(qū)域?yàn)檫\(yùn)動(dòng)休閑區(qū),其中A,B分別在半徑,上,C,D在圓弧上,

          ;上,;區(qū)域?yàn)槲幕箙^(qū),長為,其余空地為綠化區(qū)域,且長不得超過200m.

          (1)試確定A,B的位置,使的周長最大?

          (2)當(dāng)的周長最長時(shí),設(shè),試將運(yùn)動(dòng)休閑區(qū)的面積S表示為的函數(shù),并求出S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)為兩個(gè)平面,則的充要條件是( )

          A. 內(nèi)有無數(shù)條直線與β平行B. 垂直于同一平面

          C. ,平行于同一條直線D. 內(nèi)有兩條相交直線與平行

          查看答案和解析>>

          同步練習(xí)冊(cè)答案