日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機構(gòu)從該省抽取了5個城市,并統(tǒng)計了共享單車的指標指標,數(shù)據(jù)如下表所示:

          城市1

          城市2

          城市3

          城市4

          城市5

          指標

          2

          4

          5

          6

          8

          指標

          3

          4

          4

          4

          5

          1)試求間的相關(guān)系數(shù),并說明是否具有較強的線性相關(guān)關(guān)系(若,則認為具有較強的線性相關(guān)關(guān)系,否則認為沒有較強的線性相關(guān)關(guān)系).

          2)建立關(guān)于的回歸方程,并預(yù)測當指標為7時,指標的估計值.

          3)若某城市的共享單車指標在區(qū)間的右側(cè),則認為該城市共享單車數(shù)量過多,對城市的交通管理有較大的影響交通管理部門將進行治理,直至指標在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標為13,則該城市的交通管理部門是否需要進行治理?試說明理由.

          參考公式:回歸直線中斜率和截距的最小二乘估計分別為

          ,,相關(guān)系數(shù)

          參考數(shù)據(jù):,.

          【答案】1,具有較強的線性相關(guān)關(guān)系;(2,指標的估計值為4.6;(3)城市的交通管理部門需要進行治理,理由見解析.

          【解析】

          1)求出,求出相關(guān)系數(shù)公式中的各個量,即可得出結(jié)論;

          2)利用(1)中的數(shù)據(jù)求出,求出線性回歸方程,即可求出時,的值;

          3)分別求出的值,13對比,即可得出結(jié)論.

          1)由題得,

          所以,,

          .

          因為,所以具有較強的線性相關(guān)關(guān)系.

          2)由(1)得,

          所以線性回歸方程為.

          時,,

          即當指標為7時,指標的估計值為4.6.

          3)由題得

          因為,所以該城市的交通管理部門需要進行治理.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直角坐標系中,圓的方程為,,為圓上三個定點,某同學(xué)從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設(shè)擲骰子次時,棋子移動到,處的概率分別為,.例如:擲骰子一次時,棋子移動到,處的概率分別為,

          1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;

          2)擲骰子次時,若以軸非負半軸為始邊,以射線,,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學(xué)期望;

          3)記,,,其中.證明:數(shù)列是等比數(shù)列,并求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)討論函數(shù)的零點個數(shù);

          2)設(shè),證明:當時,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著移動支付的普及,中國人的生活方式正在悄然發(fā)生改變,帶智能手機而不帶錢包出門漸漸成為中國人的新習慣.在調(diào)查現(xiàn)金支付,銀聯(lián)卡支付,手機支付三種支付方式中最常用的支付方式這個問題時,在中國某地,從20歲到40歲人群中隨機抽取55人,從40歲到60歲人群隨機抽取45人,進行答題.20歲到40歲人群的支付情況是選擇現(xiàn)金支付的占、銀聯(lián)卡支付的占、手機支付的占40歲到60歲人群的支付情況是:現(xiàn)金支付的占、銀聯(lián)卡支付的占、手機支付的占

          1)請根據(jù)以上調(diào)查結(jié)果將下面列聯(lián)表補充完整;并判斷至多有多少把握認為支付方式與年齡有關(guān);

          手機支付

          其他支付方式

          合計

          20歲到40

          40歲到60

          合計

          2)商家為了鼓勵使用手機支付規(guī)定手機支付打9折,其他支付方式不打折.現(xiàn)有一物品售價100元,以樣本中支付方式的頻率估計一件產(chǎn)品支付方式的概率,假設(shè)購買每件物品的支付方式相互獨立.求4件此種物品銷售額的數(shù)學(xué)期望.

          附:,其中

          0.40

          0.25

          0.15

          0.10

          0.050

          0.025

          0.01

          0.708

          1.323

          2.072

          2.706

          3.841

          5.024

          6.636

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在坐標原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于 兩點,直線 分別與軸交于點,

          (Ⅰ)求橢圓的方程;

          (Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),將曲線上每一點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉(zhuǎn)交曲線于點.

          1)求曲線的參數(shù)方程;

          2)求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系xy中,曲線C的參數(shù)方程為為參數(shù)),在以為極點,軸的非負半軸為極軸的極坐標系中,直線的極坐標方程為。

          1)求曲線C的極坐標方程;

          (2)設(shè)直線與曲線C相交于A,B兩點,P為曲C上的一動點,求△PAB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國南北朝數(shù)學(xué)家何承天發(fā)明的調(diào)日法是程序化尋求精確分數(shù)來表示數(shù)值的算法,其理論依據(jù)是:設(shè)實數(shù)的不足近似值和過剩近似值分別為,則的更為精確的不足近似值或過剩近似值.我們知道,若令,則第一次用“調(diào)日法”后得的更為精確的過剩近似值,即,若每次都取最簡分數(shù),那么第四次用“調(diào)日法”后可得的近似分數(shù)為(

          A.B.C.D.

          查看答案和解析>>

          同步練習冊答案