日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•深圳一模)一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績?nèi)缦卤硭荆?br />
          學(xué)生 A1
          數(shù)學(xué)(x分) 89 91 93 95 97
          物理(y分) 87 89 89 92 93
          (1)要從 5 名學(xué)生中選2 人參加一項活動,求選中的學(xué)生中至少有一人的物理成績高于90分的概率;
          (2)請在所給的直角坐標(biāo)系中畫出它們的散點圖,并求這些數(shù)據(jù)的線性回歸方程
          y
          =bx+a.
          分析:(1)用列舉法可得從5名學(xué)生中任取2名學(xué)生的所有情況和其中至少有一人物理成績高于90(分)的情況包含的事件數(shù)目,由古典概型公式,計算可得答案.
          (2)把所給的五組數(shù)據(jù)作為五個點的坐標(biāo)描到直角坐標(biāo)系中,得到散點圖;根據(jù)所給的數(shù)據(jù)先做出數(shù)據(jù)的平均數(shù),即樣本中心點,根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.
          解答:解:(1)從5名學(xué)生中任取2名學(xué)生的所有情況為:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)、(A1,A2)、(A1,A3)、(A2,A3)共種情10況.…(3分)
          其中至少有一人物理成績高于90(分)的情況有:(A4,A5)、(A4,A1)、(A4,A2)、(A4,A3)、(A5,A1)、(A5,A2)、(A5,A3)共7種情況,
          故上述抽取的5人中選2人,選中的學(xué)生的物理成績至少有一人的成績高于9(0分)的概率P=
          7
          10
          .…(5分)
          (2)散點圖如圖所示.…(6分)

          可求得:
          .
          x
          =
          89+91+93+95+97
          5
          =93,
          .
          y
          =
          87+89+89+92+93
          5
          =90,…(8分)
          5
          i=1
          (xi-
          .
          x
          )(yi-
          .
          y
          )=30
          5
          i=1
          (xi-
          .
          x
          )
          2
          =(-4)2+(-2)2+02+22+42=40,
          b=
          30
          40
          =0.75,
          a=
          .
          y
          -b
          .
          x
          =20.25,…(11分)
          故y關(guān)于x的線性回歸方程是:
          ?
          y
          =0.75x+20.25
          .…(12分)
          點評:本題主要考查了古典概型和線性回歸方程等知識,考查了學(xué)生的數(shù)據(jù)處理能力和應(yīng)用意識.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然對數(shù)的底數(shù).
          (1)試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
          (2)當(dāng)a=e,b=4時,求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點;
          (3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的參數(shù)方程為
          x=
          t
          y=t+1.
          (t為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ-ρcosθ=3,則C1與C2交點在直角坐標(biāo)系中的坐標(biāo)為
          (2,5)
          (2,5)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log3(1+x),則f(-2)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知函數(shù)f(x)=2sin(
          πx
          6
          +
          π
          3
          )(0≤x≤5)
          ,點A、B分別是函數(shù)y=f(x)圖象上的最高點和最低點.
          (1)求點A、B的坐標(biāo)以及
          OA
          OB
          的值;
          (2)設(shè)點A、B分別在角α、β的終邊上,求tan(α-2β)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知數(shù)列{an}滿足:a1=1,a2=a(a≠0),an+2=p•
          an+12
          an
          (其中p為非零常數(shù),n∈N*).
          (1)判斷數(shù)列{
          an+1
          an
          }
          是不是等比數(shù)列?
          (2)求an;
          (3)當(dāng)a=1時,令bn=
          nan+2
          an
          ,Sn為數(shù)列{bn}的前n項和,求Sn

          查看答案和解析>>

          同步練習(xí)冊答案