日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文)橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)距離比為1:2,則橢圓離心率取值范圍為   
          【答案】分析:設(shè)橢圓上點(diǎn)P到兩焦點(diǎn)F1、F2距離比為1:2,則PF1=r,PF2=2r,可得2a=PF1+PF2=3r.再由橢圓上動(dòng)點(diǎn)P滿(mǎn)足|PF1-PF2|≤2c,可得a≤6c,最后結(jié)合橢圓的離心率滿(mǎn)足0<e<1,得到該橢圓的離心率e的取值范圍.
          解答:解:設(shè)橢圓的兩焦點(diǎn)分別為F1、F2,
          ∵點(diǎn)P到兩焦點(diǎn)F1、F2距離比為1:2,
          ∴設(shè)PF1=r,則PF2=2r,可得2a=PF1+PF2=3r,r=a
          ∵|PF1-PF2|=r≤2c,(當(dāng)P點(diǎn)在F2F1延長(zhǎng)線(xiàn)上時(shí),取等號(hào))
          a≤2c,所以橢圓離心率e=
          又∵橢圓的離心率滿(mǎn)足0<e<1,
          ∴該橢圓的離心率e∈
          故答案為:
          點(diǎn)評(píng):本題在已知橢圓上動(dòng)點(diǎn)到橢圓兩個(gè)焦點(diǎn)距離之比等于1:2的情況下,求橢圓的離心率,著重考查了橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (文)橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)距離比為1:2,則橢圓離心率取值范圍為
          [
          1
          3
          ,1)
          [
          1
          3
          ,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
          x2
          m2
          +
          y2
          n2
          =1
          (m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
          (1)若橢圓C上的點(diǎn)A(1,
          3
          2
          )到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
          (2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
          PF1
          PF2
          =0
          ,求△PF1F2的面積.
          (3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線(xiàn)QM與直線(xiàn)QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線(xiàn)
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)是否具有類(lèi)似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線(xiàn)更為一般的結(jié)論,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012年四川省成都市高二上學(xué)期期中考試數(shù)學(xué) 題型:填空題

          (文)橢圓上存在一點(diǎn)P,使得點(diǎn)P到兩焦點(diǎn)距離比為1:2,則橢圓離心率取值范圍為_(kāi)____

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:楊浦區(qū)二模 題型:解答題

          (文)設(shè)F1、F2分別為橢圓C:
          x2
          m2
          +
          y2
          n2
          =1
          (m>0,n>0且m≠n)的兩個(gè)焦點(diǎn).
          (1)若橢圓C上的點(diǎn)A(1,
          3
          2
          )到兩個(gè)焦點(diǎn)的距離之和等于4,求橢圓C的方程.
          (2)如果點(diǎn)P是(1)中所得橢圓上的任意一點(diǎn),且
          PF1
          PF2
          =0
          ,求△PF1F2的面積.
          (3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)Q是橢圓上任意一點(diǎn),且直線(xiàn)QM與直線(xiàn)QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點(diǎn)Q位置無(wú)關(guān)的定值.試問(wèn):雙曲線(xiàn)
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)是否具有類(lèi)似的性質(zhì)?并證明你的結(jié)論.通過(guò)對(duì)上面問(wèn)題進(jìn)一步研究,請(qǐng)你概括具有上述性質(zhì)的二次曲線(xiàn)更為一般的結(jié)論,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案