日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓E:的左頂點(diǎn)、上頂點(diǎn)分別為A、B,P為線段AB上一點(diǎn),F(xiàn)1、F2分別為橢圓E的左、右焦點(diǎn),若的最小值小于零,則橢圓E的離心率的取值范圍為( )
          A.
          B.
          C.
          D.
          【答案】分析:依題意可求得AB的方程,設(shè)出P點(diǎn)坐標(biāo),代入AB得方程,求得若的最小值,令<0,結(jié)合橢圓的離心率的性質(zhì)即可求得答案.
          解答:解:依題意,作圖如下:
          ∵A(-a,0),B(0,b),F(xiàn)1(-c,0),F(xiàn)2(c,0),
          ∴直線AB的方程為:+=1,整理得:bx-ay+ab=0,
          設(shè)直線AB上的點(diǎn)P(x,y
          則bx=ay-ab,
          ∴x=y-a,
          =(-c-x,-y)•(c-x,-y)=+-c2
          =+-c2,
          令f(y)=+-c2,
          ∵f′(y)=2(y-a)×+2y
          ∴由f′(y)=0得:y=,于是x=-,
          此時(shí)f(y)取到最小值,
          =+-c2
          <0,
          +-c2<0,
          整理得:<c2,又b2=a2-c2,e2=,
          ∴e4-3e2+1<0,
          <e2,又橢圓的離心率e∈(0,1),
          <e2<1,
          ==,
          <e<1.
          故選C.
          點(diǎn)評:本題考查橢圓的性質(zhì),考查向量的數(shù)量積,考查直線的方程,著重考查函數(shù)的最值的求法,求得是關(guān)鍵,更是難點(diǎn),屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓E:數(shù)學(xué)公式的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:數(shù)學(xué)公式過A,F(xiàn)2兩點(diǎn).
          (1)求橢圓E的方程;
          (2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=數(shù)學(xué)公式時(shí),證明:點(diǎn)P在一定圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓E:數(shù)學(xué)公式的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:數(shù)學(xué)公式過A,F(xiàn)2兩點(diǎn).
          (1)求橢圓E的方程;
          (2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=數(shù)學(xué)公式時(shí),證明:點(diǎn)P在一定圓上.
          (3)直線BC過坐標(biāo)原點(diǎn),與橢圓E相交于B,C,點(diǎn)Q為橢圓E上的一點(diǎn),若直線QB,QC的斜率kQB,kQC存在且不為0,求證:kQB•kQC為定植.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市高三(上)質(zhì)量抽測數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓E:的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:過A,F(xiàn)2兩點(diǎn).
          (1)求橢圓E的方程;
          (2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省鹽城市東臺市安豐中學(xué)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓E:的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:過A,F(xiàn)2兩點(diǎn).
          (1)求橢圓E的方程;
          (2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上.
          (3)直線BC過坐標(biāo)原點(diǎn),與橢圓E相交于B,C,點(diǎn)Q為橢圓E上的一點(diǎn),若直線QB,QC的斜率kQB,kQC存在且不為0,求證:kQB•kQC為定植.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市高三(上)9月質(zhì)量檢測數(shù)學(xué)試卷 (解析版) 題型:解答題

          已知橢圓E:的左頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,且圓C:過A,F(xiàn)2兩點(diǎn).
          (1)求橢圓E的方程;
          (2)設(shè)直線PF2的傾斜角為α,直線PF1的傾斜角為β,當(dāng)β-α=時(shí),證明:點(diǎn)P在一定圓上.

          查看答案和解析>>

          同步練習(xí)冊答案