日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),點(diǎn)M(x0,1)C,|MF|=.

          (1)p的值;

          (2)若直線l經(jīng)過(guò)點(diǎn)Q(3,-1)且與C交于A,B(異于M)兩點(diǎn),證明:直線AM與直線BM的斜率之積為常數(shù).

          【答案】(1);(2)

          【解析】

          (1)拋物線定義知|,則 ,求得x0=2p,代入拋物線方程,
          (2)由(1)得M(1,1),拋物線C:y2=2x,

          當(dāng)直線l經(jīng)過(guò)點(diǎn)Q(3,-1)且垂直于x軸時(shí),直線AM的斜率 ,直線BM的斜率 ,

          當(dāng)直線l不垂直于x軸時(shí),直線l的方程為y+1=k(x-3),代入拋物線方程,由韋達(dá)定理及斜率公式求得 ,即可證明直線AM與直線BM的斜率之積為常數(shù)

          (1)由拋物線定義知|MF|=x0+,則x0+=x0,解得x0=2p,

          又點(diǎn)M(x0,1)在C上,所以2px0=1,解得x0=1,p=.

          (2)由(1)得M(1,1),C:y2=x.

          當(dāng)直線l經(jīng)過(guò)點(diǎn)Q(3,-1)且垂直于x軸時(shí),不妨設(shè)A(3,),B(3,-),

          則直線AM的斜率kAM=,直線BM的斜率kBM=,所以kAM·kBM=-×=-.

          當(dāng)直線l不垂直于x軸時(shí),設(shè)A(x1,y1),B(x2,y2),

          則直線AM的斜率kAM===,同理直線BM的斜率kBM=,∴kAM·kBM=·=.

          設(shè)直線l的斜率為k(顯然k≠0且k≠-1),則直線l的方程為y+1=k(x-3).

          聯(lián)立消去x,得ky2-y-3k-1=0,

          所以y1+y2=,y1y2=-=-3-,故kAM·kBM===-.

          綜上,直線AM與直線BM的斜率之積為-.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),.

          (1)討論函數(shù)的零點(diǎn)個(gè)數(shù);

          (2)求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知的內(nèi)角的對(duì)邊分別為,2acosCc=2b.

          (1)若點(diǎn)在邊,,的面積;

          (2)若為銳角三角形,,的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若直線是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列命題正確的是( )

          A. 都不相交 B. 都相交

          C. 至多與中的一條相交 D. 至少與中的一條相交

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根,求證:

          (2)若存在使得成立,求實(shí)數(shù)的取值范圍.(其中為自然對(duì)數(shù)的底數(shù),

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】命題:函數(shù)的兩個(gè)零點(diǎn)分別在區(qū)間上;命題:函數(shù)有極值.若命題,為真命題的實(shí)數(shù)的取值集合分別記為.

          1)求集合,;

          2)若命題“”為假命題,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】13個(gè)不同的小球放入編號(hào)為1,23,44個(gè)盒子中,一共有多少種不同的放法?

          23個(gè)不同的小球放入編號(hào)為1,2,3,44個(gè)盒子中,恰有2個(gè)空盒的放法共有多少種?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的定義域?yàn)?/span>A,若時(shí)總有,則稱為單函數(shù).例如,函數(shù)=2x+1()是單函數(shù).下列命題:

          函數(shù)xR)是單函數(shù);

          指數(shù)函數(shù)xR)是單函數(shù);

          為單函數(shù),,則

          在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).

          其中的真命題是_________.(寫(xiě)出所有真命題的編號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,頂點(diǎn)在底面ABCD內(nèi)的射影恰為點(diǎn)C.

          1)求證:BC⊥平面ACD1;

          2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案