日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
          (3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.
          解:(1)因?yàn)?IMG style="WIDTH: 89px; HEIGHT: 36px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20120818/201208181123474081863.png">,所以c=1
          則b=1,即橢圓C的標(biāo)準(zhǔn)方程為
          (2)因?yàn)镻(1,1),所以,所以kOQ=﹣2,
          所以直線OQ的方程為y=﹣2x
          又橢圓的左準(zhǔn)線方程為x=﹣2,所以點(diǎn)Q(﹣2,4)
          所以kPQ=﹣1,又kOP=1,所以kOPkPQ=﹣1,即OP⊥PQ,
          故直線PQ與圓O相切
          (3)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),直線PQ與圓O保持相切
          證明:設(shè)P(x0,y0)(),則y02=2﹣x02,
          所以,,
          所以直線OQ的方程為
          所以點(diǎn)Q(﹣2,
          所以,
          ,所以kOPkPQ=﹣1,即OP⊥PQ,故直線PQ始終與圓O相切
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
          2
          2
          的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過(guò)原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
          (3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
          (1)求橢圓方程.
          (2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
          (1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
          (2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過(guò)點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓O:x2+y2=1,點(diǎn)P在直線x=
          3
          上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案