日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直角坐標(biāo)系xOy中,圓Ox2+y2=4x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)A的直線AM,AN分別與圓O交于M,N兩點(diǎn),設(shè)直線AMAN的斜率分別為k1、k2

          1)若,求AMN的面積;

          2)若k1k2=-2,求證:直線MN過定點(diǎn).

          【答案】(1);(2)詳見解析.

          【解析】

          1)由題意得到直線AMAN的方程,利用垂徑定理分別求得AMAN的值,再由兩直線垂直,代入三角形面積公式求解;

          2)由題知直線AM的方程y=k1x+2),直線AN的方程為.分別與圓的方程聯(lián)立求得MN的坐標(biāo),寫出MN的直線方程,利用直線系方程即可證明線MN過定點(diǎn).

          1)由題知,直線AM的方程為y=2x+4,直線AN的方程為

          ∴圓心到直線AM的距離,得

          同理求得,

          由題知k1k2=-1,得ANAM,

          ;

          2)由題知直線AM的方程y=k1x+2),直線AN的方程為

          聯(lián)立方程,得

          x=-2,

          ,同理,,

          ∴直線MN

          ,得,

          ∴直線MN恒過定點(diǎn)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】交強(qiáng)險(xiǎn)是車主須為機(jī)動(dòng)車購買的險(xiǎn)種.若普通座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基本保費(fèi))是元,在下一年續(xù)保時(shí),實(shí)行費(fèi)率浮動(dòng)制,其保費(fèi)與上一年度車輛發(fā)生道路交通事故情況相聯(lián)系,具體浮動(dòng)情況如下表:

          類型

          浮動(dòng)因素

          浮動(dòng)比率

          上一年度未發(fā)生有責(zé)任的道路交通事故

          下浮

          上兩年度未發(fā)生有責(zé)任的道路交通事故

          下浮

          上三年度未發(fā)生有責(zé)任的道路交通事故

          下浮

          上一年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

          上一年度發(fā)生兩次及以上有責(zé)任不涉及死亡的道路交通事故

          上浮

          上三年度發(fā)生有責(zé)任涉及死亡的道路交通事故

          上浮

          某一機(jī)構(gòu)為了研究某一品牌座以下投保情況,隨機(jī)抽取了輛車齡滿三年的該品牌同型號私家車的下一年續(xù)保情況,統(tǒng)計(jì)得到如下表格:

          類型

          數(shù)量

          以這輛該品牌汽車的投保類型的頻率視為概率.

          (I)試估計(jì)該地使用該品牌汽車的一續(xù)保人本年度的保費(fèi)不超過元的概率;

          (II)記為某家庭的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列和期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

          )求數(shù)列的通項(xiàng)公式;

          )令.求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊)數(shù)據(jù):

          單價(jià)(元)

          18

          19

          20

          21

          22

          銷量(冊)

          61

          56

          50

          48

          45

          (l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:

          (2)預(yù)計(jì)今后的銷售中,銷量(冊)與單價(jià)(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價(jià)應(yīng)定為多少元?

          附:,,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)若不等式解集為,求實(shí)數(shù)的值;

          (2)在(1)的條件下,若不等式解集非空,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線與直線 相交于兩點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn) .

          (1)當(dāng)k=1時(shí),求的值;

          (2)若的面積等于,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中,將底面為直角三角形且側(cè)棱垂直于底面的三棱柱稱之為塹堵;將底面為矩形且一側(cè)棱垂直于底面的四棱錐稱之為陽馬;將四個(gè)面均為直角三角形的四面體稱之為鱉臑[biē nào].某學(xué)?茖W(xué)小組為了節(jié)約材料,擬依托校園內(nèi)垂直的兩面墻和地面搭建一個(gè)塹堵形的封閉的實(shí)驗(yàn)室,是邊長為2的正方形.

          1)若是等腰三角形,在圖2的網(wǎng)格中(每個(gè)小方格都是邊長為1的正方形)畫出塹堵的三視圖;

          2)若,上,證明:,并回答四面體是否為鱉臑,若是,寫出其每個(gè)面的直角(只需寫出結(jié)論);若不是,請說明理由;

          3)當(dāng)陽馬的體積最大時(shí),求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有以下命題:如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系是不共線;為空間四點(diǎn),且向量不構(gòu)成空間的一個(gè)基底,那么點(diǎn)一定共面;已知向量是空間的一個(gè)基底,則向量,也是空間的一個(gè)基底。其中正確的命題是( )

          A. ①②B. ①③C. ②③D. ①②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

          分組

          頻數(shù)

          頻率

          [10,15)

          10

          0.25

          [15,20)

          25

          n

          [20,25)

          m

          p

          [25,30)

          2

          0.05

          合計(jì)

          M

          1

          (1)求出表中M,p及圖中a的值;

          (2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

          (3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

          查看答案和解析>>

          同步練習(xí)冊答案