【題目】在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學(xué)和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.
(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?
(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量
的期望和方差;
(3)某商場為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費每滿1000元可直減100元;方案二:手機(jī)支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機(jī)支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
【答案】(1)列聯(lián)表見解析,99%;(2),
;(3)第二種優(yōu)惠方案更劃算.
【解析】
(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;
(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,知
服從二項分布,即
,可求得其期望和方差;
(3)若選方案一,則需付款元,若選方案二,設(shè)實際付款
元,,則
的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.
(1)由已知得出聯(lián)列表:
,所以
,
有99%的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān);
(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,
,
;
(3)若選方案一,則需付款元
若選方案二,設(shè)實際付款元,,則
的取值為1200,1080,1020,
,
,
,
選擇第二種優(yōu)惠方案更劃算
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,函數(shù)
在區(qū)間
的最小值為
,試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,求函數(shù)
在
處的切線方程;
(2)若函數(shù)在和
處有兩個極值點,其中
,
.
(i)求實數(shù)的取值范圍;
(ii)若(e為自然對數(shù)的底數(shù)),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在多面體中,底面
是邊長為
的的菱形,
,四邊形
是矩形,平面
平面
,
,
和
分別是
和
的中點.
(Ⅰ)求證:平面平面
;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)
時,
(
).
(1)當(dāng)時,求
的表達(dá)式:
(2)求在區(qū)間
的最大值
的表達(dá)式;
(3)當(dāng)時,若關(guān)于x的方程
(a,
)恰有10個不同實數(shù)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓
的左、右焦點,離心率為
,點
在橢圓上.
(1)求橢圓的方程;
(2)過的直線
分別交橢圓于
和
,且
,問是否存在常數(shù)
,使得
成等差數(shù)列?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=x3-
x2+ax.
(Ⅰ) 當(dāng)a=2時,求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點與f (x)的極小值點相同,
求證:g(x)的極大值小于等于10.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形是邊長為2的菱形,
,
為
的中點,以
為折痕將
折起到
的位置,使得平面
平面
,如圖2.
(1)證明:平面平面
;
(2)求點到平面
的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com