日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

          (1)若的坐標(biāo)為,求的值;

          (2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,證明: .

          【答案】(1) (2)

          【解析】試題分析:

          1)由題意可得拋物線的方程為,設(shè)切線的方程為,將其代入拋物線方程可得,根據(jù)判別式為零可得,驗證可得。(2)由條件得以線段為直徑的圓為圓,只考慮斜率為正數(shù)的直線,因為為直線與圓的切點,所以, ,故。又直線的方程為,將其代入拋物線方程由代數(shù)法可得弦長,從而可得結(jié)論成立。

          試題解析

          (1)由拋物線的焦點到準(zhǔn)線的距離為,得,

          所以拋物線的方程為.

          設(shè)切線的方程為,

          消去整理得,

          ,

          當(dāng)時,可得的橫坐標(biāo)為,則,

          當(dāng)時,同理可得.

          綜上可得。

          (2)由(1)知, ,

          所以以線段為直徑的圓為圓,

          根據(jù)對稱性,只要探討斜率為正數(shù)的直線即可,

          因為為直線與圓的切點,

          所以, ,

          所以

          所以,

          所以直線的方程為,

          消去整理得

          因為直線與拋物線交于兩點,

          所以,

          設(shè),

          所以,

          所以。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          已知,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù));在以坐標(biāo)原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程是.

          (Ⅰ)求證: ;

          (Ⅱ)設(shè)點的極坐標(biāo)為, 為直線, 的交點,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形中, ,分別過點作直線, 垂直平面,且, .

          (Ⅰ)求證: 平面;

          (Ⅱ)求二面角的平面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前項和為,滿足的等差中項為).

          (1)求數(shù)列的通項公式;

          (2)是否存在正整數(shù),是不等式)恒成立,若存在,求出的最大值;若不存在,請說明理由.

          (3)設(shè) ,若集合恰有個元素,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

          (1)求證: 平面;

          (2)求證: 平面;

          (3)求點到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形是正四棱柱的一個截面,此截面與棱交于點 , ,其中分別為棱上一點.

          (1)證明:平面平面;

          (2)為線段上一點,若四面體與四棱錐的體積相等,求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+y2+2x﹣4y+3=0.
          (1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
          (2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
          (Ⅰ)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
          (Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

          查看答案和解析>>

          同步練習(xí)冊答案