在平面直角坐標(biāo)系中,已知橢圓
的左焦點(diǎn)為
,且橢圓
的離心率
.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點(diǎn)分別為
,
是橢圓
上異于
的任一點(diǎn),直線
分別交
軸于點(diǎn)
,證明:
為定值,并求出該定值;
(3)在橢圓上,是否存在點(diǎn)
,使得直線
與圓
相交于不同的兩點(diǎn)
,且
的面積最大?若存在,求出點(diǎn)
的坐標(biāo)及對(duì)應(yīng)的
的面積;若不存在,請(qǐng)說(shuō)明理由.
(1) ; (2)定值是4,詳見(jiàn)解析;
(3)存在, 的坐標(biāo)為
,
的面積為
.
解析試題分析:(1)根據(jù)橢圓的焦點(diǎn)、離心率和的關(guān)系求出橢圓標(biāo)準(zhǔn)方程中的
;(2)先設(shè)
,求出直線
的方程,并求出它們與
軸的交點(diǎn)
的坐標(biāo),建立
三點(diǎn)坐標(biāo)的關(guān)系,然后利用
在橢圓上,從而把
中的
消去得到定值; (3)先假設(shè)存在點(diǎn)
,則有直線
與圓
相交,進(jìn)而寫(xiě)出
的面積函數(shù),發(fā)現(xiàn)利用基本不等式可以求出函數(shù)的最大值,故假設(shè)存在,再求出取得最大值時(shí)點(diǎn)
的坐標(biāo).
試題解析:解:(1)由題意:,解得:
3分
所以橢圓 4分
(2) 由(1)可知,設(shè)
,
直線:
,令
,得
; 5分
直線:
,令
,得
; 6分
則, 7分
而,所以
,
所以 8分
(3)假設(shè)存在點(diǎn)滿(mǎn)足題意,則
,即
設(shè)圓心到直線的距離為
,則
,且
9分
所以 10分
所以 11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/2/1vz1g4.png" style="vertical-align:middle;" />,所以,所以
所以 12分
當(dāng)且僅當(dāng),即
時(shí),
取得最大值
由,解得
13分
所以存在點(diǎn)滿(mǎn)足題意,點(diǎn)
的坐標(biāo)為
此時(shí)的面積為
14分
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程,、2解析法,3、直線與圓相交問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對(duì)稱(chēng).
(1)若點(diǎn)的坐標(biāo)為
,求
的值;
(2)若橢圓上存在點(diǎn)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+
=1(a>b>0)的離心率為
,過(guò)右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有=
+
成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓
上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過(guò)點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別為
,且經(jīng)過(guò)點(diǎn)
,
為橢圓上的動(dòng)點(diǎn),以
為圓心,
為半徑作圓
.
(1)求橢圓的方程;
(2)若圓與
軸有兩個(gè)交點(diǎn),求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為橢圓
的左,右焦點(diǎn),
為橢圓上的動(dòng)點(diǎn),且
的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過(guò)點(diǎn)作不與
軸垂直的直線
交該橢圓于
兩點(diǎn),
為橢圓的左頂點(diǎn)。試判斷
的大小是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過(guò)F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(Ⅰ)若ΔABF2為正三角形,求橢圓的離心率;
(Ⅱ)若橢圓的離心率滿(mǎn)足,0為坐標(biāo)原點(diǎn),求證
為鈍角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知焦點(diǎn)在軸上的橢圓
和雙曲線
的離心率互為倒數(shù),它們?cè)诘谝幌笙藿稽c(diǎn)的坐標(biāo)為
,設(shè)直線
(其中
為整數(shù)).
(1)試求橢圓和雙曲線
的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓
交于不同兩點(diǎn)
,與雙曲線
交于不同兩點(diǎn)
,問(wèn)是否存在直線
,使得向量
,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
,
以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
⑴ 求曲線的普通方程和曲線
的直角坐標(biāo)方程;
⑵ 當(dāng)時(shí),曲線
和
相交于
、
兩點(diǎn),求以線段
為直徑的圓的直角坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com