【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當時,
;
(3)確定實數(shù)的值,使得存在
當
時,恒有
.
【答案】(1);(2)見解析;(3)
.
【解析】試題分析:(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),令導(dǎo)函數(shù)大于0,解出即可;
(Ⅱ)構(gòu)造函數(shù)F(x)=f(x)-x+1,先求出函F(x)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性證明即可;
(Ⅲ)通過討論和
,結(jié)合函數(shù)的單調(diào)性求解即可.
試題解析:(1),
由得
解得
,
故的單調(diào)遞增區(qū)間是
;
(2)令,則有
,
當時,
,
所以在
上單調(diào)遞減,
故當時,
,即當
時,
;
(3)由(2)知,當時,不存在
滿足題意,
當時,對于
,有
,則
,從而不存在
滿足題意,
當時,令
,
則有,
由得,
,
解得,
當時,
,故
在
內(nèi)單調(diào)遞增,
從而當時,
,即
,
綜上, 的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某海關(guān)對同時從三個不同地區(qū)進口的某種商品進行隨機抽樣檢測,已知從
三個地區(qū)抽取的商品件數(shù)分別是50,150,100.檢測人員再用分層抽樣的方法從海關(guān)抽樣的這些商品中隨機抽取6件樣品進行檢測.
(1)求這6件樣品中,來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件送往另一機構(gòu)進行進一步檢測,求這2件樣品來自相同地區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x+1|﹣|2﹣x|.
(1)解不等式f(x)<0;
(2)若m,n∈R+ , ,求證:n+2m﹣f(x)>0恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知所在的平面,
是
的直徑,
是
上一點,且
是
中點,
為
中點.
(1)求證: 面
;
(2)求證: 面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知所在的平面,
是
的直徑,
是
上一點,且
是
中點,
為
中點.
(1)求證: 面
;
(2)求證: 面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為{x|x≠0}的偶函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),對任意正實數(shù)x滿足xf′(x)>﹣2f(x),若g(x)=x2f(x),則不等式g(x)<g(1﹣x)的解集是( )
A.( ,+∞)
B.(﹣∞, )
C.(﹣∞,0)∪(0, )
D.(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的導(dǎo)函數(shù)為
,其中a為常數(shù)
(I)討論f(x)的單調(diào)性;
(Ⅱ)當a=-1時,若不等式恒成立,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當時,求函數(shù)
的單調(diào)增區(qū)間;
(2)若曲線在點
處的切線
與曲線
有且只有一個公共點,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com