日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓過(guò), 兩點(diǎn),且圓心在直線.

          1)求圓的方程;

          2)若直線過(guò)點(diǎn)且被圓截得的線段長(zhǎng)為,求的方程.

          【答案】(1);(2)

          【解析】試題分析:(1)把點(diǎn)P、Q的坐標(biāo)和圓心坐標(biāo)代入圓的一般方程,利用待定系數(shù)法求得系數(shù)的值;(2)分類討論,斜率存在和斜率不存在兩種情況.①當(dāng)直線l的斜率不存在時(shí),滿足題意,易得直線方程;②當(dāng)直線l的斜率存在時(shí),設(shè)所求直線l的斜率為k,則直線l的方程為:y-5=kx,由點(diǎn)到直線的距離公式求得k的值.

          試題解析:

          (1)設(shè)圓的方程為,圓心 ,根據(jù)題意有,計(jì)算得出,

          故所求圓的方程為.

          (2)如圖所示, ,設(shè)是線段的中點(diǎn),

          ,

          , .

          中,可得.

          當(dāng)直線的斜率不存在時(shí),滿足題意,

          此時(shí)方程為.

          當(dāng)直線的斜率存在時(shí),設(shè)所求直線的斜率為,則直線的方程為: ,

          ,由點(diǎn)到直線的距離公式:

          ,得,此時(shí)直線的方程為.

          ∴所求直線的方程為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

          (1)求直方圖中的值;

          (2)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.

          (3)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)

          (Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);

          (Ⅱ)若對(duì)于,總有.(i)求實(shí)數(shù)的范圍; (ii)求證:對(duì)于,不等式成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且2an+Sn=An2+Bn+C.
          (1)當(dāng)A=B=0,C=1時(shí),求an;
          (2)若數(shù)列{an}為等差數(shù)列,且A=1,C=﹣2. ①設(shè)bn=2nan , 求數(shù)列{bn}的前n項(xiàng)和;
          ②設(shè)cn= ,若不等式cn 對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某算法的程序圖如圖所示,其中輸入的變量x在1,2,3,…,30這30個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.
          (1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
          (2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù),下面是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù): 甲的頻數(shù)統(tǒng)計(jì)表(部分)

          運(yùn)行次數(shù)

          輸出y=1的頻數(shù)

          輸出y=2的頻數(shù)

          輸出y=3的頻數(shù)

          50

          24

          19

          7

          2000

          1027

          776

          197

          乙的頻數(shù)統(tǒng)計(jì)表(部分)

          運(yùn)行次數(shù)

          輸出y=1的頻數(shù)

          輸出y=2的頻數(shù)

          輸出y=3的頻數(shù)

          50

          26

          11

          13

          2000

          1051

          396

          553

          當(dāng)n=2000時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷甲、乙中誰(shuí)所編寫的程序符合算法要求的可能性較大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓C的方程:x2+y2﹣4x﹣6y+m=0,若圓C與直線a:x+2y﹣3=0相交于M、N兩點(diǎn),且|MN|=2
          (1)求m的值;
          (2)是否存在直線l:x﹣y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖①,在矩形中, , 的中點(diǎn),將三角形沿翻折到圖②的位置,使得平面平面.

          (Ⅰ)在線段上確定點(diǎn),使得平面,并證明;

          (Ⅱ)求所在平面構(gòu)成的銳二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸,焦距為2,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè),過(guò)橢圓左焦點(diǎn)的直線、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式)恒成立,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

          (Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

          甲班(A方式)

          乙班(B方式)

          總計(jì)

          成績(jī)優(yōu)秀

          成績(jī)不優(yōu)秀

          總計(jì)

          (Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?

          附:.

          P(K2k)

          0.25

          0.15

          0.10

          0.05

          0.025

          k

          1.323

          2.072

          2.706

          3.841

          5.024

          查看答案和解析>>

          同步練習(xí)冊(cè)答案