日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線y=(a-3)x3+ln x存在垂直于y軸的切線,函數(shù)f(x)=x3-ax2-3x+1在[1,2]上單調(diào)遞增,則a的取值范圍為________.
          (-∞,0]
          由已知條件可得方程y′=3(a-3)x2=0(x>0),即3(a-3)x3+1=0有大于0的實(shí)數(shù)根,即得x3=->0,解得a<3,又由函數(shù)f(x)=x3-ax2-3x+1在[1,2]上單調(diào)遞增,可得不等式f′(x)=3x2-2ax-3≥0在[1,2]上恒成立,即得a≤在[1,2]上恒成立,由函數(shù)y=x-在[1,2]上單調(diào)遞增可得,該函數(shù)的最小值為0,∴a≤0,綜上可得實(shí)數(shù)a的取值范圍為(-∞,0].
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知
          (1)若存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
          (2)若,求證:當(dāng)時(shí),恒成立;
          (3)設(shè),證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù).
          (1)當(dāng)時(shí),求的極值;
          (2)當(dāng)時(shí),討論的單調(diào)性;
          (3)若對任意的,恒有成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          函數(shù),其中為實(shí)常數(shù)。
          (1)討論的單調(diào)性;
          (2)不等式上恒成立,求實(shí)數(shù)的取值范圍;
          (3)若,設(shè)。是否存在實(shí)常數(shù),既使又使對一切恒成立?若存在,試找出的一個(gè)值,并證明;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=ax3x2cxd(a,c,d∈R)滿足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
          (1)求ac,d的值;
          (2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)函數(shù)f(x)=ax2bxc(a,bc∈R),若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則下列圖象不可能為yf(x)的圖象是(  ).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=(ax2bxc)exf(0)=1,f(1)=0.
          (1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xexmx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若實(shí)數(shù)滿足,則的最小值為(   )
          A.B.2C.D.8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)y=cos(2x+1)的導(dǎo)數(shù)是(  )
          A.y′=sin(2x+1)
          B.y′=-2xsin(2x+1)
          C.y′=-2sin(2x+1)
          D.y′=2xsin(2x+1)

          查看答案和解析>>

          同步練習(xí)冊答案