日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為, ,作殘差分析,如表:

          身高

          60

          70

          80

          90

          100

          110

          體重

          6

          8

          10

          14

          15

          18

          0.41

          0.01

          1.21

          -0.19

          0.41

          -0.36

          0.07

          0.12

          1.69

          -0.34

          -1.12

          (Ⅰ)求表中空格內(nèi)的值;

          (Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個模型;

          (Ⅲ)殘差大于的樣本點被認為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(Ⅱ)所選擇的模型重新建立回歸方程.

          (結(jié)果保留到小數(shù)點后兩位)

          附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為, .

          【答案】(Ⅰ);(Ⅱ)模型①的擬合效果比較好;(Ⅲ) .

          【解析】試題分析:(Ⅰ)將代入相應(yīng)回歸方程,再做差即可;(Ⅱ)比較模型①殘差的絕對值與模型②殘差的絕對值和即可的結(jié)論;(Ⅲ)直接根據(jù)公式求出的值,將樣本的中心點代入方程可得的值,進而得結(jié)果.

          試題解析:(Ⅰ)根據(jù)殘差分析,把代入.

          .所以表中空格內(nèi)的值為.

          (Ⅱ)模型①殘差的絕對值和為,

          模型②殘差的絕對值和為.

          ,所以模型①的擬合效果比較好,選擇模型①.

          (Ⅲ)殘差大于的樣本點被剔除后,剩余的數(shù)據(jù)如表

          由公式: .得回歸方程為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動點P,過P引平行于OB的直線和OA交于點C,設(shè)∠AOPθ,當(dāng)△POC面積的最大值時θ的值為___________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓,一動圓與直線相切且與圓外切.

          (1)求動圓圓心的軌跡的方程;

          (2)若經(jīng)過定點的直線與曲線交于兩點, 是線段的中點,過軸的平行線與曲線相交于點,試問是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Tn= n2 n,且an+2+3log4bn=0(n∈N*
          (1)求{bn}的通項公式;
          (2)數(shù)列{cn}滿足cn=anbn , 求數(shù)列{cn}的前n項和Sn;
          (3)若cn m2+m﹣1對一切正整數(shù)n恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知0<α< <β<π,tan ,cos(β﹣α)=
          (1)求sinα的值;
          (2)求sinβ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關(guān)注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機抽取了50人進行調(diào)查,將調(diào)查情況進行整理后制成下表:

          年齡

          [20,25)

          [25,30)

          [30,35)

          [35,40)

          [40,45)

          人數(shù)

          4

          5

          8

          5

          3

          年齡

          [45,50)

          [50,55)

          [55,60)

          [60,65)

          [65,70)

          人數(shù)

          6

          7

          3

          5

          4

          經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機選取2人,進行跟蹤調(diào)查.

          (I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;

          (II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點為原點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)判斷直線與曲線的位置關(guān)系;

          (2)過直線上的點作曲線的切線,求切線長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABCA1B1C1中,AB=BC=BB1,DAC上的點,B1C∥平面A1BD;

          (1)求證:BD⊥平面;

          (2)若,求三棱錐A-BCB1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
          (1)取到的2只都是次品;
          (2)取到的2只中恰有一只次品.

          查看答案和解析>>

          同步練習(xí)冊答案