日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)若函數(shù)的定義域和值域均為,求實(shí)數(shù)的值;
          (2)若在區(qū)間上是減函數(shù),且對任意的,總有,求實(shí)數(shù)的取值范圍;

          (1);(2).

          解析試題分析:(1)確定函數(shù)的對稱軸,從而可得函數(shù)的單調(diào)性,利用的定義域和值域均是,建立方程,即可求實(shí)數(shù)的值;(2)由函數(shù)的單調(diào)性得出單調(diào)遞減,在單調(diào)遞增,從而求出上的最大值和最小值的極差,使,進(jìn)而求出實(shí)數(shù)的取值范圍.
          試題解析:(1)上的減函數(shù),
          上單調(diào)遞減
             
                                               4分
          (2)在區(qū)間上是減函數(shù),            6分
          上單調(diào)遞減,在上單調(diào)遞增
          , 

                                           8分
          對任意的,總有
          ,                                      10分
          又 ,                    12分
          考點(diǎn):二次函數(shù)的最值問題,考查函數(shù)的單調(diào)性.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
          (1)求k的值及的表達(dá)式;
          (2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,一個(gè)半圓和長方形組成的鐵皮,長方形的邊為半圓的直徑,為半圓的圓心,,,現(xiàn)要將此鐵皮剪出一個(gè)等腰三角形,其底邊.

          (1)設(shè),求三角形鐵皮的面積;
          (2)求剪下的鐵皮三角形的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定.大橋上的車距與車速和車長的關(guān)系滿足:為正的常數(shù)),假定車身長為,當(dāng)車速為時(shí),車距為2.66個(gè)車身長.
          寫出車距關(guān)于車速的函數(shù)關(guān)系式;
          應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過的車輛最多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
          (Ⅰ)求的值;
          (Ⅱ)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)當(dāng)時(shí),求該函數(shù)的值域;
          (2)若對于恒成立,求有取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (I)求函數(shù)的最小值;
          (II)對于函數(shù)定義域內(nèi)的任意實(shí)數(shù),若存在常數(shù),使得不等式都成立,則稱直線是函數(shù)的“分界線”.
          設(shè)函數(shù),,試問函數(shù)是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知f(x)=在區(qū)間[-1,1]上是增函數(shù).
          (Ⅰ)求實(shí)數(shù)a的值組成的集合A;
          (Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (1)計(jì)算:;(2)解方程:log3(6x-9)=3.

          查看答案和解析>>

          同步練習(xí)冊答案