日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在(1+x)3+(1+x)4+…+(1+x)50的展開式中,x3的系數(shù)為( 。
          A、
          C
          3
          51
          B、
          C
          4
          50
          C、
          C
          4
          51
          D、
          C
          4
          47
          考點(diǎn):二項(xiàng)式定理
          專題:二項(xiàng)式定理
          分析:由題意可得,含x-3項(xiàng)的系數(shù)為
          C
          3
          3
          +
          C
          3
          4
          +
          c
          3
          5
          +…+
          C
          3
          50
          ,再利用組合數(shù)的性質(zhì)化為
          C
          4
          51
          ,從而得出結(jié)論.
          解答: 解:(1+x)3+(1+x)4+…+(1+x)50的展開式中,含x-3項(xiàng)的系數(shù)為
          C
          3
          3
          +
          C
          3
          4
          +
          c
          3
          5
          +…+
          C
          3
          50
          =
          C
          4
          51
          ,
          故選:C.
          點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,組合數(shù)的性質(zhì),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          下列各結(jié)論中:
          ①拋物線y=
          1
          4
          x2的焦點(diǎn)到直線y=x-1的距離為
          2
          ;
          ②已知函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2,
          2
          2
          ),則f(4)的值等于
          1
          2

          ③命題“存在x∈R,x2-x>0”的否定是“對(duì)于任意x∈R,x2-x<0.
          正確結(jié)論的序號(hào)是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          f(x+2)+2,x<3
          2x ,x≥3
          ,則f(log23)=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          ①函數(shù)y=|sin(2x-
          π
          3
          )|的最小正周期為π.
          ②在△ABC中,若A>B,則cos2A<cos2B.
          ③若0<α<β<γ<2π,且cosα+cosβ+cosγ=0,sinα+sinβ+sinγ=0,則γ-α等于
          3
          3

          ④若角α,β滿足cosα•cosβ=1,則sin(α+β)=0.
          ⑤若0<x<
          π
          4
          ,則sin(sinx)<sinx<sin(tanx).
          ⑥在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,則C=30°.
          則真命題的序號(hào)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足:
          an+1+an-1
          an+1-an+1
          =n(n∈N*),且a4=28,則{an}的通項(xiàng)公式為an=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)集合M={(x,y)|y=2-x},N={x|y=x},則M∩N=( 。
          A、{1,1}B、{(1,1)}
          C、{1}D、∅

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)集合M={0,1,2},N={x|x2-3x+2≤0},則M∩N=( 。
          A、{1}B、{2}
          C、{0,1}D、{1,2}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若復(fù)數(shù)z1=1+i,z2=2i,則
          z2
          z1
          =( 。
          A、-1+iB、1+i
          C、-2+2iD、2+2i

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=2lnx+mx-x2
          (Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+n,求實(shí)數(shù)m,n的值;
          (Ⅱ)若m>-4,求證:當(dāng)a>b>0時(shí),有
          f(a)-f(b)
          a2-b2
          >-2;
          (Ⅲ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),且x0=
          x1+x2
          2
          ,求證f′(x0)<0.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案