日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(導(dǎo)學(xué)號:05856309)

          已知拋物線C的方程為x2=4y,M(2,1)為拋物線C上一點,F為拋物線的焦點.

          (Ⅰ)求|MF|;

          (Ⅱ)設(shè)直線l2ykxm與拋物線C有唯一公共點P,且與直線l1y=-1相交于點Q,試問,在坐標(biāo)平面內(nèi)是否存在點N,使得以PQ為直徑的圓恒過點N?若存在,求出點N的坐標(biāo),若不存在,說明理由.

          【答案】(1)2;(2) 在坐標(biāo)平面內(nèi)存在點N,使得以PQ為直徑的圓恒過點N,其坐標(biāo)為(0,1)

          【解析】試題分析:(1)求得拋物線的焦點和準(zhǔn)線方程,根據(jù)拋物線的定義,即可得到所求|MF|

          2)假設(shè)存在點N,使得以PQ為直徑的圓恒過點N,由直線l2y=kx+m與拋物線C有唯一公共點P知,直線l2與拋物線C相切,利用導(dǎo)數(shù)求出直線l2的方程,進(jìn)而求出Q點坐標(biāo),根據(jù)直徑所對的圓周角為直角,利用,求出N點坐標(biāo).

          試題解析:

          (Ⅰ)由題可知2p=4,即p=2,由拋物線的定義可知|MF|=1+=2.

          (Ⅱ)由C關(guān)于y軸對稱可知,若存在點N,使得以PQ為直徑的圓恒過點N,則點N必在y軸上.

          設(shè)N(0,n),又設(shè)點P(x0,),由直線l2ykxm與曲線C有唯一公共點P知,直線l2C相切.

          yx2y′=x,∴,

          ∴直線l2的方程為y (xx0),

          y=-1得x,

          Q點的坐標(biāo)為(,-1),

          =(x0,n),=(,-1-n).

          ∵點N在以PQ為直徑的圓上,

          ·-2-(1+n)(n)

          =(1-n)n2n-2=0,①

          要使方程①對x0恒成立,

          必須有解得n=1,

          ∴在坐標(biāo)平面內(nèi)存在點N,使得以PQ為直徑的圓恒過點N,其坐標(biāo)為(0,1).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(導(dǎo)學(xué)號:05856264)

          已知函數(shù)f(x)=aln x,e為自然對數(shù)的底數(shù).

          (Ⅰ)曲線f(x)在點A(1,f(1))處的切線與坐標(biāo)軸所圍成的三角形的面積為2,求實數(shù)a的值;

          (Ⅱ)若f(x)≥1-恒成立,求實數(shù)a的值取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“扶貧幫困”是中華民族的傳統(tǒng)美德,某校為幫扶困難同學(xué),采用如下方式進(jìn)行一次募捐:在不透明的箱子中放入大小均相同的白球七個,紅球三個,每位獻(xiàn)愛心的參與者投幣20元有一次摸獎機會,一次性從箱子中摸球三個(摸完球后將球放回),若有一個紅球,獎金10元,兩個紅球獎金20元,三個全是紅球獎金100元.

          (1)求獻(xiàn)愛心參與者中將的概率;

          (2)若該次募捐900位獻(xiàn)愛心參與者,求此次募捐所得善款的數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過一番瀏覽后,對該店鋪中的五種商品有購買意向.已知該網(wǎng)民購買兩種商品的概率均為,購買兩種商品的概率均為,購買種商品的概率為.假設(shè)該網(wǎng)民是否購買這五種商品相互獨立.

          1)求該網(wǎng)民至少購買4種商品的概率;

          2)用隨機變量表示該網(wǎng)民購買商品的種數(shù),求的概率分布和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(導(dǎo)學(xué)號:05856299)已知雙曲線 (a>0,b>0)的左、右焦點分別是F1,F2,點P是其上一點,雙曲線的離心率是2,若△F1PF2是直角三角形且面積為3,則雙曲線的實軸長為(  )

          A. 2 B. C. 2或 D. 1或

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2018屆吉林省普通中學(xué)高三第二次調(diào)研】某校冬令營有三名男同學(xué)A,B,C和三名女同學(xué)X,Y,Z,

          1)從6人中抽取2人參加知識競賽,求抽取的2人都是男生的概率;

          2)若從這3名男生和3名女生中各任選一名,求這2人中包含A且不包含X的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(導(dǎo)學(xué)號:05856332)

          已知三棱柱ABCA1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,EBB1的中點,FCB1的中點.

          (Ⅰ)證明:平面AEF⊥平面CAA1C1;

          (Ⅱ)若CA=2,AA1=4,求B1到平面AEF的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)pf(x)在區(qū)間(1,+∞)上是減函數(shù);q:若x1x2是方程x2ax20的兩個實根,則不等式m25m3≥|x1x2|對任意實數(shù)a[1,1]恒成立.若p不正確,q正確,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在標(biāo)準(zhǔn)溫度和大氣壓下,人體血液中氫離子的物質(zhì)的量的濃度(單位mol/L,記作和氫氧根離子的物質(zhì)的量的濃度(單位mol/L,記作的乘積等于常數(shù).已知pH值的定義為,健康人體血液的pH值保持在7.357.45之間,那么健康人體血液中的可以為(參考數(shù)據(jù):

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊答案