【題目】已知橢圓的右焦點(diǎn)為
,過點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長為
,且
與短軸兩端點(diǎn)的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點(diǎn)
,
,橢圓
上存在兩個(gè)點(diǎn)
滿足:
三點(diǎn)共線,
三點(diǎn)共線,且
,求四邊形
面積的取值范圍.
【答案】(1);(2)
【解析】
(1)又題意知,,
及
即可求得
,從而得橢圓方程.
(2)分三種情況:直線斜率不存在時(shí),
的斜率為0時(shí),
的斜率存在且不為0時(shí),設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長公式以及四邊形的面積公式計(jì)算即可.
(1)由焦點(diǎn)與短軸兩端點(diǎn)的連線相互垂直及橢圓的對稱性可知,,
∵過點(diǎn)且與
軸垂直的直線被橢圓截得的線段長為
.
又,解得
.
∴橢圓的方程為
(2)由(1)可知圓的方程為
,
(i)當(dāng)直線的斜率不存在時(shí),直線
的斜率為0,
此時(shí)
(ii)當(dāng)直線的斜率為零時(shí),
.
(iii)當(dāng)直線的斜率存在且不等于零時(shí),設(shè)直線
的方程為
,
聯(lián)立,得
,
設(shè)的橫坐標(biāo)分別為
,則
.
所以,
(注:的長度也可以用點(diǎn)到直線的距離和勾股定理計(jì)算.)
由可得直線
的方程為
,聯(lián)立橢圓
的方程消去
,
得
設(shè)的橫坐標(biāo)為
,則
.
.
綜上,由(i)(ii)(ⅲ)得的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進(jìn)入了北京周期,全社會對冬奧會的熱情空前高漲.
(1)為迎接冬奧會,某社區(qū)積極推動冬奧會項(xiàng)目在社區(qū)青少年中的普及,并統(tǒng)計(jì)了近五年來本社區(qū)冬奧項(xiàng)目青少年愛好者的人數(shù)(單位:人)與時(shí)間
(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與
的關(guān)系,請計(jì)算相關(guān)系數(shù)
并加以說明(計(jì)算結(jié)果精確到0.01).
(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù)
.
(2)某冰雪運(yùn)動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率同為 ,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折. v
兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購買1000元的冰雪運(yùn)動用品,請從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
.
(1)若(其中
)
(ⅰ)求實(shí)數(shù)t的取值范圍;
(ⅱ)證明:;
(2)是否存在實(shí)數(shù)a,使得在區(qū)間
內(nèi)恒成立,且關(guān)于x的方程
在
內(nèi)有唯一解?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線
在點(diǎn)
處的切線方程為
.
(1)求的解析式;
(2)求過曲線上任意一點(diǎn)的切線與直線
和直線
所圍成的三角形面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,對任何正整數(shù)n都有:
(1)若數(shù)列是首項(xiàng)和公差都是1的等差數(shù)列,求證:數(shù)列
是等比數(shù)列;
(2)若數(shù)列是首項(xiàng)為1的等比數(shù)列,數(shù)列
是否是等差數(shù)列?若是請求出通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有______.
①回歸直線恒過點(diǎn)
,且至少過一個(gè)樣本點(diǎn);
②根據(jù)列列聯(lián)表中的數(shù)據(jù)計(jì)算得出
,而
,則有
的把握認(rèn)為兩個(gè)分類變量有關(guān)系,即有
的可能性使得“兩個(gè)分類變量有關(guān)系”的推斷出現(xiàn)錯(cuò)誤;
③是用來判斷兩個(gè)分類變量是否相關(guān)的隨機(jī)變量,當(dāng)
的值很小時(shí)可以推斷兩類變量不相關(guān);
④某項(xiàng)測量結(jié)果服從正態(tài)分布
,則
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)中學(xué)從高二級部中選拔一個(gè)班級代表學(xué)校參加“學(xué)習(xí)強(qiáng)國知識大賽”,經(jīng)過層層選拔,甲、乙兩個(gè)班級進(jìn)入最后決賽,規(guī)定回答1個(gè)相關(guān)問題做最后的評判選擇由哪個(gè)班級代表學(xué)校參加大賽.每個(gè)班級6名選手,現(xiàn)從每個(gè)班級6名選手中隨機(jī)抽取3人回答這個(gè)問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個(gè)人對問題的回答都是相互獨(dú)立,互不影響的.
(1)求甲、乙兩個(gè)班級抽取的6人都能正確回答的概率;
(2)分別求甲、乙兩個(gè)班級能正確回答題目人數(shù)的期望和方差
、
,并由此分析由哪個(gè)班級代表學(xué)校參加大賽更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值
C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平
D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com