日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若A={x|x2-x-6>0},B={x|x2-3x-4<0},則A∩B=
          {x|3<x<4}
          {x|3<x<4}
          分析:通過求解一元二次不等式化簡(jiǎn)集合A與B,然后直接利用交集運(yùn)算求解.
          解答:解:由A={x|x2-x-6>0}={x|x<-2,或x>3},
          B={x|x2-3x-4<0}={x|-1<x<4}.
          ∴A∩B={x|x<-2,或x>3}∩{x|-1<x<4}={x|3<x<4}.
          故答案為{x|3<x<4}.
          點(diǎn)評(píng):本題考查了交集及其運(yùn)算,考查了一元二次不等式的解法,是基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
          ①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
          ②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
          (1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
          (文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
          (2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
          (文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
          (3)(理)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
          (文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若A={x|x2+x-6=0},B={x|
          1m
          x+1=0}
          ,且A∪B=A,則實(shí)數(shù)m的值為
          {-2,3}
          {-2,3}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知φ(x)=
          a
          x+1
          ,a
          為正常數(shù).(e=2.71828…);
          (理科做)(1)若f(x)=lnx+φ(x),且a=
          9
          2
          ,求函數(shù)f(x)在區(qū)間[1,e]上的最大值與最小值
          (2)若g(x)=|lnx|+φ(x),且對(duì)任意x1,x2∈(0,2],x1≠x2都有
          g(x2)-g(x1)
          x2-x1
          <-1
          ,求a的取值范圍.
          (文科做)(1)當(dāng)a=2時(shí)描繪?(x)的簡(jiǎn)圖
          (2)若f(x)=?(x)+
          1
          ?(x)
          ,求函數(shù)f(x)在區(qū)間[1,e]上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若A={x|x2+x-a>0},且1∉A,則a的取值范圍為
          {a|a≥2}
          {a|a≥2}

          查看答案和解析>>

          同步練習(xí)冊(cè)答案