日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,平面,正方形邊長為2,的中點.

          1)求證:平面;

          2)求證:直線與平面所成角的正弦值為,求的長度;

          3)若,線段上是否存在一點,使平面,若存在求的長度,若不存在則說明.

          【答案】1)證明見解析;(2)證明見解析,24;(3)存在,

          【解析】

          1)以為原點建立空間直角坐標(biāo)系,求出,平面法向量,利用,即可證出.

          2)求出平面法向量,由,利用空間向量的數(shù)量積即可求解.

          3)假設(shè)存在,設(shè),由(1)平面法向量,,由向量共線可得,解方程即可求解.

          (1)由平面,平面,所以,

          因為為正方形,所以,

          ,

          所以平面.

          如圖以為原點建立空間直角坐標(biāo)系

          ,,,

          ,

          設(shè)平面法向量為

          ,

          ,

          ,平面平面

          2)設(shè)平面法向量為,

          ,

          ,令,

          ,設(shè)直線與平面所成角為

          解得4,所以長為4

          3)存在,,,

          ,

          解得,.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和Sn滿足4Snan2+2an,nN*.設(shè)bn=(﹣1nanan+1,Tn為數(shù)列{bn}的前n項和,則T2n_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.

          1)求橢圓C的標(biāo)準(zhǔn)方程;

          2)設(shè)F為橢圓C的左焦點,T為直線上任意一點,過FTF的垂線交橢圓C于點P,Q.

          i)證明:OT平分線段PQ(其中O為坐標(biāo)原點);

          ii)當(dāng)最小時,求點T的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)有兩個不同的極值點.

          1)求的取值范圍.

          2)求的極大值與極小值之和的取值范圍.

          3)若,則是否有最小值?若有,求出最小值;若沒有,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為拋物線上的一點,,為拋物線上異于點的兩點,且直線的斜率與直線的斜率互為相反數(shù).

          1)求直線的斜率;

          2)設(shè)直線過點并交拋物線于,兩點,且,直線軸交于點,試探究的夾角是否為定值,若是則求出定值,若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正四棱錐PABCD的底面邊長為2,側(cè)棱長為2,過點A作一個與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點A,B的坐標(biāo)分別是(0),(,0),動點Mx,y)滿足直線AMBM的斜率之積為﹣3,記M的軌跡為曲線E

          1)求曲線E的方程;

          2)直線ykx+m與曲線E相交于P,Q兩點,若曲線E上存在點R,使得四邊形OPRQ為平行四邊形(其中O為坐標(biāo)原點),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2020年是我國垃圾分類逐步凸顯效果關(guān)鍵的一年.在國家高度重視,重拳出擊的前提下,高強度、高頻率的宣傳教育能有效縮短我國生活垃圾分類走入世界前列所需的時間,打好垃圾分類這場持久戰(zhàn)全民戰(zhàn)”.某市做了一項調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機各抽取15名學(xué)生,對垃圾分類知識進(jìn)行問答,滿分為100分,他們所得成績?nèi)缦拢?/span>

          城市中學(xué)學(xué)生成績分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

          縣城中學(xué)學(xué)生成績分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

          1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績的莖葉圖,并通過莖葉圖比較兩所中學(xué)學(xué)生成績的平均分及分散程度;(不要求計算出具體值,給出結(jié)論即可)

          2)從城市中學(xué)成績在80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績在90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】今年,新型冠狀病毒來勢兇猛,老百姓一時間談毒色變,近來,有關(guān)喝白酒可以預(yù)防病毒的說法一直在民間流傳,更有人拿出醫(yī)字的繁體字醫(yī)進(jìn)行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預(yù)防病毒,我們調(diào)查了1000人的喝酒生活習(xí)慣與最終是否得病進(jìn)行了統(tǒng)計,表格如下:

          每周喝酒量(兩)

          人數(shù)

          100

          300

          450

          100

          規(guī)定:①每周喝酒量達(dá)到4兩的叫常喝酒人,反之叫不常喝酒人;

          ②每周喝酒量達(dá)到8兩的叫有酒癮的人.

          1)求值,從每周喝酒量達(dá)到6兩的人中按照分層抽樣選出6人,再從這6人中選出2人,求這2人中無有酒癮的人的概率;

          2)請通過上述表格中的統(tǒng)計數(shù)據(jù),填寫完下面的列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.1的前提下認(rèn)為是否得病與是否常喝酒有關(guān)?并對民間流傳的說法做出你的判斷.

          常喝酒

          不常喝酒

          合計

          得病

          不得病

          250

          650

          合計

          參考公式:,其中

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          同步練習(xí)冊答案