【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在
處的切線過點
,求
的值;
②當(dāng)時,若函數(shù)
在
上沒有零點,求
的取值范圍.
(2)設(shè)函數(shù),且
,求證: 當(dāng)
時,
.
【答案】(1)①;②
;(2)證明見解析.
【解析】
試題分析:(1)①由題意切線斜率
,又
切線方程
;②當(dāng)
,因為
.
然后利用分類討論思想對和
分情況討論的:
;(2)由題意得
,從而原命題等價于
設(shè)
,然后利用導(dǎo)數(shù)工具證明
.
試題解析:
(1)①由題意,得,所以函數(shù)
在
處的切線斜率
,又
,所以函數(shù)
在
處的切線方程
,將點
代入,得
.
②當(dāng),可得
,因為
.
當(dāng)時,
,函數(shù)
在
上單調(diào)遞增,而
,所以只需
,解得
,從而
當(dāng)
時,由
,解得
,當(dāng)
時,
單調(diào)遞減; 當(dāng)
時,
單調(diào)遞增, 所以函數(shù)
在
上有最小值為
,令
,解得
.綜上所述,
.
(2)由題意,,而
,等價于
,則
,且
,
令,則
,因為
,所以導(dǎo)數(shù)
在
上單調(diào)遞增,于是
,從而函數(shù)
在
上單調(diào)遞增,即
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(I)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的)
(II)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(I)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求
的分布列和數(shù)學(xué)期望.
(附參考公式)若,則
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求
的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,假命題是_________ (填序號).
①經(jīng)過定點P(x0,y0)的直線不一定都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③與兩條坐標(biāo)軸都相交的直線不一定可以用方程表示;
④經(jīng)過點Q(0,b)的直線都可以表示為y=kx+b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點
為拋物線
上一點.
(1)求的方程;
(2)若點在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在坐標(biāo)軸上,點
為拋物線
上一點.
(1)求的方程;
(2)若點在
上,過
作
的兩弦
與
,若
,求證: 直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知,乒乓球是中國的國球,乒乓球隊內(nèi)部也有著很嚴(yán)格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內(nèi)部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為,
,
,且各場比賽互不影響.
(1)若甲至少獲勝兩場的概率大于,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?
(2)求甲獲勝場次的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐中,
平面
,
∥
,
∥
,
∥
,
,
,
,
是等腰三角形.
(1)求證:平面平面
;
(2)求側(cè)棱上是否存在點
,使得
與平面
所成角大小為
,若存在,求出
點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:直線
與圓
有兩個交點;命題:
.
(1)若為真命題,求實數(shù)
的取值范圍;
(2)若為真命題,
為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com