【題目】我國的西氣東輸工程把西部的資源優(yōu)勢變?yōu)榻?jīng)濟(jì)優(yōu)勢,實(shí)現(xiàn)了氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟(jì)發(fā)展輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為米峽谷拐入寬為
米的峽谷.如圖所示,位于峽谷懸崖壁上兩點(diǎn)
、
的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(diǎn)
(點(diǎn)
、
、
在同一水平面內(nèi)),設(shè)
與較寬側(cè)峽谷懸崖壁所成角為
,則
的長為________(用
表示)米.要使輸氣管順利通過拐角,其長度不能低于________米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查,為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.
方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組
個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這
個(gè)人的血就只需檢驗(yàn)一次;否則,若呈陽性,則需對這
個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組
個(gè)人的血總共需要化驗(yàn)
次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為
,求
的分布列;
(2)設(shè),試比較方案②中,
分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn)為
,點(diǎn)
,
的面積為
,直線
過
上的點(diǎn)
.
(1)求的方程;
(2)設(shè)為
的短軸端點(diǎn),直線
過點(diǎn)
交
于
,證明:四邊形
的兩條對角線的交點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,海岸公路MN的北方有一個(gè)小島A(大小忽略不計(jì))盛產(chǎn)海產(chǎn)品,在公路MN的B處有一個(gè)海產(chǎn)品集散中心,點(diǎn)C在B的正西方向10處,
,
,計(jì)劃開辟一條運(yùn)輸線將小島的海產(chǎn)品運(yùn)送到集散中心.現(xiàn)有兩種方案:①沿線段AB開辟海上航線:②在海岸公路MN上選一點(diǎn)P建一個(gè)碼頭,先從海上運(yùn)到碼頭,再公路MN運(yùn)送到集散中心.已知海上運(yùn)輸、岸上運(yùn)輸費(fèi)用分別為400元/
、200元/
.
(1)求方案①的運(yùn)輸費(fèi)用;
(2)請確定P點(diǎn)的位置,使得按方案②運(yùn)送時(shí)運(yùn)輸費(fèi)用最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體中,
平面
,
平面
,
,
,
為
的中點(diǎn).
(1)求證:平面
;
(2)求多面體的體積;
(3)求平面和平面
所成的銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求證:當(dāng)時(shí),
的圖象位于直線
上方;
(Ⅱ)設(shè)函數(shù),若曲線
在點(diǎn)
處的切線與
軸平行,且在點(diǎn)
處的切線與直線
平行(
為坐標(biāo)原點(diǎn)),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞增,且f(﹣1)=﹣1.若f(x﹣1)+1≥0,則x的取值范圍是_____;設(shè)函數(shù)若方程f(g(x))+1=0有且只有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).則下面結(jié)論正確的是( )
A.是奇函數(shù)B.
在
上為增函數(shù)
C.若,則
D.若
,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上一動點(diǎn)A的坐標(biāo)為.
(1)求點(diǎn)A的軌跡E的方程;
(2)點(diǎn)B在軌跡E上,且縱坐標(biāo)為.
(i)證明直線AB過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ii)分別以A,B為圓心作與直線相切的圓,兩圓公共弦的中點(diǎn)為H,在平面內(nèi)是否存在定點(diǎn)P,使得
為定值?若存在,求出點(diǎn)P坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com