(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.
(1)解:令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.
(2)證明:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1).解得f(-1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).
∴f(x)為偶函數(shù).
(3)解:f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.
∴f(3x+1)+f(2x-6)≤3,即f[(3x+1)(2x-6)]≤f(64). (*)
∵f(x)在(0,+∞)上是增函數(shù),
∴(*)等價于不等式組
或
即
∴3<x≤5或-≤x<-
或-
<x<3.?
∴x的取值范圍為{x|-≤x<-
或-
<x<3或3<x≤5}.
講評:解答本題易出現(xiàn)如下思維障礙:
(1)無從下手,不知如何脫掉“f”.解決辦法:利用函數(shù)的單調(diào)性.
(2)無法得到另一個不等式.解決辦法:關(guān)于原點對稱的兩個區(qū)間上,奇函數(shù)的單調(diào)性相同,偶函數(shù)的單調(diào)性相反.
科目:高中數(shù)學 來源: 題型:
-2x 3 |
-2x |
2 |
x |
f(2x) |
x-2 |
6 |
a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
A.[-1,1] B.R C.[0,2] D.[0,1]
查看答案和解析>>
科目:高中數(shù)學 來源:2010年寧夏高一上學期期中考試數(shù)學卷 題型:選擇題
已知函數(shù)f(x)=的定義域是一切實數(shù),則m的取值范圍是( )
A.0<m≤4 B.0≤m≤1 C.m≥4 D.0≤m≤4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com