【題目】右圖是一個幾何體的平面展開圖,其中ABCD為
正方形, E、F分別為PA、PD的中點,在此幾何體中,
給出下面四個結(jié)論:
①直線BE與直線CF異面;②直線BE與直線AF異面;
③直線EF//平面PBC; ④平面BCE⊥平面PAD.
其中正確結(jié)論的個數(shù)是
A. 1個 B. 2個 C. 3個 D. 4個
【答案】2個
【解析】
①連接EF,由E、F分別為PA、PD的中點,可得EF∥AD,從而可得E,F,B,C共面,故直線BE與直線CF是共面直線;
②根據(jù)E∈平面PAD,AF平面PAD,EAF,B平面PAD,可得直線BE與直線AF是異面直線;
③由①知EF∥BC,利用線面平行的判定可得直線EF∥平面PBC;
④由于不能推出線面垂直,故平面BCE⊥平面PAD不成立.
解:如圖所示,
①連接EF,則∵E、F分別為PA、PD的中點,∴EF∥AD,∵AD∥BC,∴EF∥BC,∴E,F,B,C共面,∴直線BE與直線CF是共面直線,故①正確;
②∵E∈平面PAD,AF平面PAD,EAF,B平面PAD,∴直線BE與直線AF是異面直線,故②正確;
③由①知EF∥BC,∵EF平面PBC,BC平面PBC,∴直線EF∥平面PBC,故③正確;
④由于不能推出線面垂直,故平面BCE⊥平面PAD不成立.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長方體中,
為
的中點,
在棱
上,
,
.
(1)若異面直線與
互相垂直,求
的長;
(2)當(dāng)四棱錐的體積為
時,求證:直線
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論的單調(diào)性;
(2)當(dāng)時,令
,其導(dǎo)函數(shù)為
,設(shè)
是函數(shù)
的兩個零點,判斷
是否為
的零點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為
,離心率為
,
為圓
的圓心.
(1)求橢圓的方程;
(2)已知過橢圓右焦點的直線
交橢圓于
兩點,過
且與
垂直的直線
與圓
交于
兩點,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,
,則
:
,
C. “若,則
”的否命題是“若
,則
”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體ABCDE中,四邊形ABED是直角梯形,∠BAD=90°,DE∥AB,△ACD是的正三角形,CD=AB=DE=1,BC=
(1)求證:△CDE是直角三角形
(2) F是CE的中點,證明:BF⊥平面CDE
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐,
和
都是邊長為
的等邊三角形,
,
、
分別是
、
的中點.
(1)求證: 平面
;
(2)連接,求證:
平面
;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店制作并銷售一款蛋糕,當(dāng)天每售出個利潤為
元,未售出的每個虧損
元.根據(jù)以往
天的統(tǒng)計資料,得到如下需求量表,元旦這天,此蛋糕店制作了
個這種蛋糕.以
(單位:個,
)表示這天的市場需求量.
(單位:元)表示這天售出該蛋糕的利潤.
需求量/個 | |||||
天數(shù) | 10 | 20 | 30 | 25 | 15 |
(1)將表示為
的函數(shù),根據(jù)上表,求利潤
不少于
元的概率;
天的平均需求量(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(3)元旦這天,該店通過微信展示打分的方式隨機(jī)抽取了名市民進(jìn)行問卷調(diào)查,調(diào)查結(jié)果如下表所示,已知在購買意愿強(qiáng)的市民中,女性的占比為
.
購買意愿強(qiáng) | 購買意愿弱 | 合計 | |
女性 | 28 | ||
男性 | 22 | ||
合計 | 28 | 22 | 50 |
完善上表,并根據(jù)上表,判斷是否有的把握認(rèn)為市民是否購買這種蛋糕與性別有關(guān)?
附: .
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:關(guān)于的不等式
的解集為空集
;命題q:函數(shù)
沒有零點,若命題P且q為假命題,P或q為真命題,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com